## Semiclassical quantization of the electromagnetic field confined in a Kerr-effect nonlinear cavity

JOSA B, Vol. 23, Issue 8, pp. 1644-1649 (2006)

http://dx.doi.org/10.1364/JOSAB.23.001644

Enhanced HTML Acrobat PDF (111 KB)

### Abstract

We obtain stationary solution for optical solitons propagating in a Kerr-effect nonlinear cavity using elliptic functions and quantize them semiclassically. On invoking box boundary conditions, a constraint relating the number of particles, wavelength, and a parameter associated with the elliptic function emerges. This constraint fundamentally modifies the binding energy of the soliton and lends the system a rich plethora of solution types with diverse behavior as a function of excitation number. We also speculate on how the bright soliton can thermalize through a path of frequency conversion.

© 2006 Optical Society of America

**OCIS Codes**

(190.3270) Nonlinear optics : Kerr effect

(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: December 19, 2005

Revised Manuscript: February 13, 2006

Manuscript Accepted: February 24, 2006

**Citation**

J. C. Martinez and Anton, "Semiclassical quantization of the electromagnetic field confined in a Kerr-effect nonlinear cavity," J. Opt. Soc. Am. B **23**, 1644-1649 (2006)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-8-1644

Sort: Year | Journal | Reset

### References

- R. Y. Chiao, T. H. Hansson, J. M. Leinaas, and S. Viefers, "Effective photon-photon interaction in a two-dimensional photon fluid," Phys. Rev. A 69, 063816 (2004). [CrossRef]
- M. W. Mitchel, C. I. Hancox, and R. Y. Chiao, "Dynamics of atom-mediated photon-photon scattering," Phys. Rev. A 62, 043819 (2000). [CrossRef]
- R. Y. Chiao and J. Boyce, "Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons in a two-dimensional photon fluid," Phys. Rev. A 60, 4114-4121 (1999). [CrossRef]
- J. Boyce and R. Chiao, "Transverse oscillation arising from spatial soliton formation in nonlinear optical cavities," Phys. Rev. A 59, 3953-3958 (1999). [CrossRef]
- P. Navez, "Frequency down-conversion through Bose condensation of light," Phys. Rev. A 68, 013811 (2003). [CrossRef]
- J. C. Martinez, "Dynamics of frequency conversion of an optical pulse in a microcavity," Phys. Rev. A 71, 015801 (2005). [CrossRef]
- F. Laussy, G. Malpuech, A. Kavokin, and P. Bigenwald, "Spontaneous coherence buildup in a polariton laser," Phys. Rev. Lett. 93, 016402 (2004). [CrossRef]
- P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. Skolnick, D. M. Whittaker, and J. S. Roberts, "Angle-resonant stimulated polariton amplifier," Phys. Rev. Lett. 84, 1547-1550 (2000). [CrossRef] [PubMed]
- A. Gorlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, "Realization of Bose-Einstein condensates in lower dimensions," Phys. Rev. Lett. 87, 130402 (2001). [CrossRef] [PubMed]
- D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, "Regimes of quantum degeneracy in trapped 1D gases," Phys. Rev. Lett. 85, 3745-3749 (2000). [CrossRef] [PubMed]
- Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003), pp. 31-46.
- A. Hasegawa, Optical Solitons in Fibers, Vol. 116 of Springer Tracts in Modern Physics (Springer, 1989), pp. 13-30. [CrossRef]
- Y. Lai and H. A. Haus, "Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation," Phys. Rev. A 40, 844-853 (1989). [CrossRef] [PubMed]
- M. Wadati and M. Sakagami, "Classical soliton as the limit of the quantum field theory," J. Phys. Soc. Jpn. 53, 1933-1938 (1984). [CrossRef]
- C. Nohl, "Semiclassical quantization of the nonlinear Schrodinger equation," Ann. Phys. (N.Y.) 96, 234-260 (1976). [CrossRef]
- L. D. Carr, C. W. Clark, and W. P. Reinhardt, "Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity," Phys. Rev. A 62, 063610 (2000). [CrossRef]
- L. D. Carr, C. W. Clark, and W. P. Reinhardt, "Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity," Phys. Rev. A 62, 063611 (2000). [CrossRef]
- R. Kanamoto, H. Saito, and M. Ueda, "Quantum phase transition in one-dimensional Bose-Einstein condensates with attractive interaction," Phys. Rev. A 67, 013608 (2003). [CrossRef]
- L. A. Lugiato and R. Lefever, "Spatial dissipative structures in passive optical systems," Phys. Rev. Lett. 58, 2209-2211 (1987). [CrossRef] [PubMed]
- L. M. Milne-Thomson, "Jacobian elliptic functions and theta functions," in Handbook of Mathematical Functions, M.Abramowitz and I.A.Stegun, eds. (National Bureau of Standards, 1964), pp. 569-588.
- R. F. Dashen, B. Hasslacher, and A. Neveu, "Nonperturbative methods and extended-hadron models in field theory. I. Semiclassical functional methods," Phys. Rev. D 10, 4114-4129 (1974). [CrossRef]
- R. Rajaraman, Solitons and Instantons (North-Holland, 1982), pp. 167-195.
- J. B. McGuire, "Study of exactly soluble one-dimensional N-body problems," J. Math. Phys. 5, 622-636 (1964). [CrossRef]
- J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, 1988), pp. 44-46.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.