OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1761–1769

Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers

Péter Nyakas, Gábor Varga, Zsolt Puskás, Naoki Hashizume, Tamás Kárpáti, Tamás Veszprémi, and György Zsombok  »View Author Affiliations


JOSA B, Vol. 23, Issue 9, pp. 1761-1769 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001761


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A self-consistently coupled three-dimensional dynamical model is presented for the first time, to our knowledge, to simulate noncircular vertical-cavity surface-emitting lasers. The electric, thermal, and optical processes are formulated using finite-volume-method discretization adopted on a unified mesh consisting of prism elements. Steady-state and dynamical calculations are shown for specially designed structures. An efficient numerical treatment enables one to perform large-scale calculations on single computers.

© 2006 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 8, 2005
Revised Manuscript: March 29, 2006
Manuscript Accepted: April 7, 2006

Citation
Péter Nyakas, Gábor Varga, Zsolt Puskás, Naoki Hashizume, Tamás Kárpáti, Tamás Veszprémi, and György Zsombok, "Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 23, 1761-1769 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-9-1761


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, "Selective oxidation of buried AlGaAs versus AlAs layers," Appl. Phys. Lett. 69, 1385-1387 (1996). [CrossRef]
  2. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, "High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure," Appl. Phys. Lett. 85, 5161-5163 (2004). [CrossRef]
  3. N. Yokouchi, A. Y. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003). [CrossRef]
  4. P. S. Ivanov, H. J. Unold, R. Michalzik, J. Maehnss, K. J. Ebeling, and I. A. Sukhoivanov, "Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals," J. Opt. Soc. Am. B 20, 2442-2447 (2003). [CrossRef]
  5. H. Liu, M. Yan, P. Shum, H. Ghafouri-Shiraz, and D. Liu, "Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers," Opt. Express 12, 4269-4274 (2004). [CrossRef] [PubMed]
  6. P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, "Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory," IEEE J. Sel. Top. Quantum Electron. 9, 1394-1404 (2003). [CrossRef]
  7. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J. Sel. Top. Quantum Electron. 11, 107-116 (2005). [CrossRef]
  8. G. P. Bava, P. Debernardi, and L. Fratta, "Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers," Phys. Rev. A 63, 023816 (2001). [CrossRef]
  9. P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, "Influence of anisotropies on transverse modes in oxide-confined VCSELs," IEEE J. Quantum Electron. 38, 73-84 (2002). [CrossRef]
  10. P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, "Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement," Opt. Commun. 250, 389-397 (2005). [CrossRef]
  11. M. J. Noble, J. P. Loehr, and J. A. Lott, "Analysis of microcavity VCSEL lasing modes using a full-vector weighted index method," IEEE J. Quantum Electron. 34, 1890-1903 (1998). [CrossRef]
  12. A. Valle and L. Pesquera, "Analytical calculation of transverse-mode characteristics in vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 19, 1549-1557 (2002). [CrossRef]
  13. M. X. Jungo, D. Erni, and W. Bächtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003). [CrossRef]
  14. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996). [CrossRef]
  15. J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002). [CrossRef]
  16. J. S. Gustavsson, Å. Haglund, J. J. Bengtsson, P. Modh, and A. Larsson, "Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief," IEEE J. Quantum Electron. 40, 607-619 (2004). [CrossRef]
  17. J. S. Gustavsson, J. Bengtsson, and A. Larsson, "Spatially dependent noise model for vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 40, 1163-1176 (2004). [CrossRef]
  18. M. Streiff, A. Witzig, M. Pfeiffer, P. Royo, and W. Fichtner, "A comprehensive VCSEL device simulator," IEEE J. Sel. Top. Quantum Electron. 9, 879-891 (2003). [CrossRef]
  19. A. Christ, N. Kuster, M. Streiff, A. Witzig, and W. Fichtner, "Correction of the numerical reflection coefficient of the finite-difference time-domain method for efficient simulation of vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 20, 1401-1408 (2003). [CrossRef]
  20. R. Michalzik and K. J. Ebeling, "Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes," IEEE J. Quantum Electron. 29, 1963-1974 (1993). [CrossRef]
  21. PICS3D, User's Manual, Version 4.6.1 (Crosslight Software Inc., 2001).
  22. W. Nakwaski and M. Osinski, "Thermal analysis of GaAs-AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors," IEEE J. Quantum Electron. 29, 1981-1995 (1993). [CrossRef]
  23. C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, "The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers," IEEE J. Quantum Electron. QE-19, 947-952 (1983). [CrossRef]
  24. R. Mittra and Ü. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microw. Guid. Wave Lett. 5, 84-86 (1995). [CrossRef]
  25. P. Debernardi and G. P. Bava, "Coupled mode theory: a powerful tool for analyzing complex VCSELs and designing advanced device features," IEEE J. Sel. Top. Quantum Electron. 9, 905-917 (2003). [CrossRef]
  26. P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, "Comparison of optical VCSEL models on the simulation of oxide-confined devices," IEEE J. Quantum Electron. 37, 1618-1631 (2001). [CrossRef]
  27. S. Shinada and F. Koyama, "Single high-order transverse mode surface-emitting laser with controlled far-field pattern," IEEE Photon. Technol. Lett. 14, 1641-1643 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited