OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1882–1887

Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter

Evgenii E. Serebryannikov and Aleksei M. Zheltikov  »View Author Affiliations

JOSA B, Vol. 23, Issue 9, pp. 1882-1887 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffraction-controlled wavelength dependence of the effective mode area S eff ( λ ) in optical fibers can serve as a mechanism limiting the soliton self-frequency shift induced by the Raman effect in materials with retarded nonlinearity. By numerically solving the generalized nonlinear Schrödinger equation modified to include the S eff ( λ ) dependence, we show that, as the central wavelength of the soliton increases, the waveguide mode tends to become less compact, slowing down the soliton self-frequency shift. As a result, for optical fibers with a steep S eff ( λ ) profile, wavelength uncertainties and the timing jitter of the frequency-shifted soliton induced by input power fluctuations can be substantially reduced compared with fibers with a weak S eff ( λ ) dependence.

© 2006 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: January 23, 2006
Revised Manuscript: May 2, 2006
Manuscript Accepted: May 3, 2006

Evgenii E. Serebryannikov and Aleksei M. Zheltikov, "Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter," J. Opt. Soc. Am. B 23, 1882-1887 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986). [CrossRef] [PubMed]
  2. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  4. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  6. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001). [CrossRef]
  7. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001). [CrossRef]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  9. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005). [CrossRef]
  10. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005). [CrossRef]
  11. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005). [CrossRef] [PubMed]
  12. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004). [CrossRef]
  13. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990). [CrossRef] [PubMed]
  14. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001). [CrossRef]
  15. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  16. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  17. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  18. A.M.Zheltikov, ed., "Supercontinuum generation," Appl. Phys. B 77, 2-3 (2003).
  19. A. M. Zheltikov, "Nonlinear optics of microstructure fibres," Phys. Usp. 47, 69-98 (2004). [CrossRef]
  20. See http://www.crystal-fiber.com.
  21. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited