OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 1965–1974

Confinement loss in adiabatic photonic crystal fiber tapers

Boris T. Kuhlmey, Hong C. Nguyen, M. J. Steel, and Benjamin J. Eggleton  »View Author Affiliations

JOSA B, Vol. 23, Issue 9, pp. 1965-1974 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystals

Original Manuscript: January 13, 2006
Revised Manuscript: March 27, 2006
Manuscript Accepted: April 13, 2006

Boris T. Kuhlmey, Hong C. Nguyen, M. J. Steel, and Benjamin J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Am. B 23, 1965-1974 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, J. C. Knight, and S. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  2. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002). [PubMed]
  3. B. T. Kuhlmey, R. McPhedran, and C. de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002). [CrossRef]
  4. G. Renversez, F. Bordas, and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005). [CrossRef] [PubMed]
  5. B. Kuhlmey, R. McPhedran, C. de Sterke, P. Robinson, G. Renversez, and D. Maystre, "Microstructured optical fibers: where's the edge?" Opt. Express 10, 1285-1290 (2002). [PubMed]
  6. H. C. Nguyen, B. T. Kuhlmey, M. J. Steel, C. L. Smith, E. C. Mägi, R. C. McPhedran, and B. J. Eggleton, "Leakage of the fundamental mode in photonic crystal fiber tapers," Opt. Lett. 30, 1123-1125 (2005). [CrossRef] [PubMed]
  7. Y. K. Lizé, E. C. Mägi, V. G. Taeed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  8. D. J. Moss, Y. Miao, V. Weed, E. C. Mägi, and B. J. Eggleton, "Coupling to high-index waveguides via tapered microstructured optical fiber," Electron. Lett. 41, 951-953 (2005). [CrossRef]
  9. T. A. Birks, "Reducing losses in photonic crystal fibres," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, 2006), p. OFC7.
  10. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterisation and applications," Appl. Phys. B 81, 377-387 (2005). [CrossRef]
  11. M. A. Foster and A. L. Gaeta, "Ultra-low threshold supercontinuum generation in subwavelength waveguides," Opt. Express 12, 3137-3143 (2004). [CrossRef] [PubMed]
  12. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation," Appl. Phys. B 81, 363-367 (2005). [CrossRef]
  13. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001). [CrossRef]
  14. A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1996).
  15. R. E. Smith and S. N. Houdewalter, "Failure of the leaky-mode representation near the waveguide mode cutoff," Opt. Lett. 20, 1133-1135 (1995). [CrossRef] [PubMed]
  16. T. White, R. McPhedran, C. de Sterke, and M. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  17. V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003). [CrossRef]
  18. S. Wilcox, L. C. Botten, C. M. de Sterke, B. T. Kuhlmey, R. C. McPhedran, D. P. Fussell, and S. Tomljenovic-Hanic, "Long wavelength behavior of the fundamental mode in microstructured optical fibers," Opt. Express 13, 1978-1984 (2005). [CrossRef] [PubMed]
  19. B. T. Kuhlmey, "Theoretical and numerical investigation of the physics of microstructured optical fibres," Ph.D. dissertation (University of Sydney and Université Aix-Marseille III, 2003), http://setis.library.usyd.edu.au/adt/publiclowbarhtml/adt-NU/public/adt-NU20040715.171105/.
  20. R. J. Black and R. Bourbonnais, "Core-mode cutoff for finite-cladding light guides," IEE Proc.-J: Optoelectron. 133, 377-384 (1986). [CrossRef]
  21. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  22. B. Kuhlmey, T. White, G. Renversez, D. Maystre, L. C. Botten, C. de Sterke, and R. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  23. M. Koshiba and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005). [CrossRef]
  24. K. N. Park and K. S. Lee, "Improved effective-index method for analysis of photonic crystal fibers," Opt. Lett. 30, 958-960 (2005). [CrossRef] [PubMed]
  25. BandSOLVE 2.0.0 (Rsoft Design Group, Inc., 2005).
  26. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  27. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. 1. Adiabaticity criteria," IEE Proc.-J: Optoelectron. 138, 343-354 (1991). [CrossRef]
  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed. (Dover, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited