OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 94–105

Design and optimization of a monolithically integratable InP-based optical waveguide isolator

Mathias Vanwolleghem, Philippe Gogol, Pierre Beauvillain, Wouter Van Parys, and Roel Baets  »View Author Affiliations


JOSA B, Vol. 24, Issue 1, pp. 94-105 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000094


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optimization design of the layer structure for a novel type of a 1.3 μ m monolithically integrated InP-based optical waveguide isolator is presented. The concept of this component is based on introducing a nonreciprocal loss–gain behavior in a standard semiconductor optical amplifier (SOA) structure by contacting the SOA with a transversely magnetized ferromagnetic metal contact, sufficiently close to the guiding and amplifying core of the SOA. The thus induced nonreciprocal complex transverse Kerr shift on the effective index of the guided TM modes, combined with a proper current injection, allows for forward transparency and backward optical extinction. We introduce two different optimization criteria for finding the optimal SOA layer structure, using two different figure-of-merit functions (FoM) for the device performance. The device performance is also compared for three different compositions of the Co x Fe 1 x ( x = 0 , 50 , 90 ) ferromagnetic transition metal alloy system. It is found that equiatomic (or quasi-equiatomic) CoFe alloys are the most suitable for this application. Depending on the used FoM, two technologically practical designs are proposed for a truly monolithically integrated optical waveguide isolator. It is also shown that these designs are robust with respect to variations in layer thicknesses and wavelength. Finally, we have derived an analytical expression that gives a better insight in the limit performance of a ferromagnetic metal-clad SOA–isolator in terms of metal parameters.

© 2006 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

History
Original Manuscript: June 23, 2006
Manuscript Accepted: August 2, 2006

Citation
Mathias Vanwolleghem, Philippe Gogol, Pierre Beauvillain, Wouter Van Parys, and Roel Baets, "Design and optimization of a monolithically integratable InP-based optical waveguide isolator," J. Opt. Soc. Am. B 24, 94-105 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-1-94

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited