OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: 2589–2596

Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson  »View Author Affiliations


JOSA B, Vol. 24, Issue 10, pp. 2589-2596 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002589


View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extraordinary transmission in subwavelength hole arrays has been interpreted by surface-plasmon models and diffraction-based models. To understand controversial mechanisms of transmission enhancement, we simulate hole arrays, using a rigorous Fourier-space scattering matrix simulation. At the enhanced transmission maximum there are large evanescent diffracted fields above the metal surface. These evanescent fields are decomposed into longitudinal and transverse components. Both components are comparable in magnitude. The longitudinal field is 15%–20% larger in the square lattice. Transverse fields are slightly larger in the triangular lattice. The longitudinal and transverse evanescent surface fields are related to bound surface modes of the hole array.

© 2007 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 26, 2007
Revised Manuscript: May 14, 2007
Manuscript Accepted: June 30, 2007
Published: September 14, 2007

Citation
R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, "Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays," J. Opt. Soc. Am. B 24, 2589-2596 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-10-2589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  4. D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  5. K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005). [CrossRef]
  6. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  7. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005). [CrossRef] [PubMed]
  8. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999). [CrossRef]
  9. W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  10. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005). [CrossRef]
  11. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  12. J. D. Kraus and K. R. Carver, Electromagnetics (McGraw-Hill, 1973).
  13. G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005). [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  15. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  16. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002). [CrossRef]
  17. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999). [CrossRef]
  18. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002). [CrossRef]
  19. J. M. Vigoureux, "Analysis of the Ebbesen experiment in the light of evanescent short range diffraction," Opt. Commun. 198, 257-263 (2001). [CrossRef]
  20. H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  21. J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  22. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005). [CrossRef]
  23. R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006). [CrossRef]
  24. M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002). [CrossRef]
  25. Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003). [CrossRef]
  26. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  27. E. Palik, Handbook of the Optical Constants of Solids II (Academic, 1991). The Drude dielectric function of gold was epsi1(ω)=1−ωp2/(ω2+ωr2); epsi2(ω)=ωp2ωr/(ω3+ωωr2).
  28. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983). [CrossRef]
  29. I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000). [CrossRef]
  30. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003). [CrossRef]
  31. F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited