OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: 2752–2762

Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities

M. Bache, J. Moses, and F. W. Wise  »View Author Affiliations

JOSA B, Vol. 24, Issue 10, pp. 2752-2762 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of soliton compression of ultrashort pulses based on phase-mismatched second-harmonic generation (SHG) (i.e., the cascaded quadratic nonlinearity) in bulk quadratic nonlinear media. The single-cycle propagation equations in the temporal domain including higher-order nonlinear terms are presented. The balance between the quadratic (SHG) and the cubic (Kerr) nonlinearity plays a crucial role; we define an effective soliton number—related to the difference between the SHG and the Kerr soliton numbers—and show that it has to be larger than unity for successful pulse compression to take place. This requires that the phase mismatch be below a critical level, which is high in a material where the quadratic nonlinearity dominates over the cubic Kerr nonlinearity. Through extensive numerical simulations we find dimensionless scaling laws, expressed through the effective soliton number, that control the behavior of the compressed pulses. These laws hold in the stationary regime, in which group-velocity mismatch effects are small, and they are similar to the ones observed for fiber soliton compressors. The numerical simulations indicate that clean compressed pulses below two optical cycles can be achieved in a β-barium borate crystal at appropriate wavelengths, even for picosecond input pulses.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: June 15, 2007
Manuscript Accepted: July 12, 2007
Published: September 28, 2007

M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, "Self-focusing and self-defocusing by cascaded second-order effects in KTP," Opt. Lett. 17, 28-30 (1992). [CrossRef] [PubMed]
  2. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, "Large nonlinear phase shifts in second-order nonlinear-optical processes," Opt. Lett. 18, 13-15 (1993). [CrossRef] [PubMed]
  3. C. R. Menyuk, R. Schiek, and L. Torner, "Solitary waves due to χ(2):χ(2) cascading," J. Opt. Soc. Am. B 11, 2434-2443 (1994). [CrossRef]
  4. X. Liu, L. Qian, and F. W. Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2):χ(2) nonlinearity," Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  5. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002). [CrossRef]
  6. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004). [CrossRef]
  7. X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, "Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings," Opt. Express 14, 9358-9370 (2006). [CrossRef] [PubMed]
  8. J. Moses and F. W. Wise, "Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal," Opt. Lett. 31, 1881-1883 (2006). [CrossRef] [PubMed]
  9. G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, "Multi-stage pulse compression by use of cascaded quadratic nonlinearity," Opt. Commun. 273, 207-213 (2007). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  11. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  12. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983). [CrossRef] [PubMed]
  13. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, "Compression of optical pulses chirped by self-phase modulation in fibers," J. Opt. Soc. Am. B 1, 139-149 (1984). [CrossRef]
  14. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Sov. Tech. Phys. Lett. 12, 311-313 (1986).
  15. F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, "Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes," J. Opt. Soc. Am. B 21, 376-383 (2004). [CrossRef]
  16. M. Bache, O. Bang, J. Moses, and F. W. Wise, "Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression," Opt. Lett. 32, 2490-2492 (2007). [CrossRef] [PubMed]
  17. T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1997). [CrossRef]
  18. J. Moses and F. W. Wise, "Controllable self-steepening of ultrashort pulses in quadratic nonlinear media," Phys. Rev. Lett. 97, 073903 (2006). [CrossRef] [PubMed]
  19. V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, 1999).
  20. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, "Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams," Opt. Lett. 32, 2469-2471 (2007). [CrossRef] [PubMed]
  21. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  22. C.-M. Chen and P. L. Kelley, "Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis," J. Opt. Soc. Am. B 19, 1961-1967 (2002). [CrossRef]
  23. J. Moses, B. A. Malomed, and F. W. Wise, "Self-steepening of ultrashort optical pulses without self-phase modulation," Phys. Rev. A 76, 021802R (2007). [CrossRef]
  24. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, "Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch," Opt. Lett. 31, 1612-1614 (2006). [CrossRef] [PubMed]
  25. S. Kumar, A. Selvarajan, and G. Anand, "Influence of Raman scattering on the cross-phase modulation in optical fibers," Opt. Commun. 102, 329-335 (1993). [CrossRef]
  26. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  27. R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996). [CrossRef]
  28. M. Sheik-Bahae and M. Ebrahimzadeh, "Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5," Opt. Commun. 142, 294-298 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited