OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: A19–A25

Laser gain media based on nanocomposite materials

Ksenia Dolgaleva and Robert W. Boyd  »View Author Affiliations


JOSA B, Vol. 24, Issue 10, pp. A19-A25 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000A19


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new way of controlling the laser properties of optical materials by designing composite materials that exploit local-field effects is proposed. It is shown that the basic laser properties, such as the radiative lifetime of the upper laser level, small-signal gain coefficient, and saturation intensity can be controlled independently by means of local-field effects. These ideas could be used to design laser systems with significantly improved properties.

© 2007 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties

History
Original Manuscript: February 6, 2007
Manuscript Accepted: February 23, 2007
Published: July 19, 2007

Virtual Issues
Photonic Metamaterials (2007) JOSA A

Citation
Ksenia Dolgaleva and Robert W. Boyd, "Laser gain media based on nanocomposite materials," J. Opt. Soc. Am. B 24, A19-A25 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-10-A19


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Lorentz, Theory of Electrons, 2nd ed. (Teubner, 1916).
  2. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  3. J. Guo, J. Cooper, and A. Gallagher, "Selective reflection from a dense atomic vapor," Phys. Rev. A 53, 1130-1138 (1996). [CrossRef] [PubMed]
  4. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991). [CrossRef] [PubMed]
  5. J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  6. J. C. Maxwell Garnett, "Colours in metal glasses, in metallic films, and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906). [CrossRef]
  7. V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988). [CrossRef]
  8. R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819 (1996). [CrossRef]
  9. R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991). [CrossRef] [PubMed]
  10. P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998). [CrossRef]
  11. P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995). [CrossRef]
  12. M. S. Tomas, "Local-field corrections to the decay rate of excited molecules in absorbing cavities: the Onsager model," Phys. Rev. A 63, 053811 (2001). [CrossRef]
  13. H. T. Dung, S. Y. Buhmann, and D.-G. Welsch, "Local-field correction to the spontaneous decay rate of atoms embedded in bodies of finite size," Phys. Rev. A 74, 023803 (2006). [CrossRef]
  14. G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995). [CrossRef] [PubMed]
  15. F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998). [CrossRef]
  16. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003). [CrossRef]
  17. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005). [CrossRef] [PubMed]
  18. C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?," Phys. Lett. A 343, 474-480 (2005). [CrossRef]
  19. P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulphorhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996). [CrossRef] [PubMed]
  20. G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999). [CrossRef]
  21. S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004). [CrossRef] [PubMed]
  22. K. P. Dolgaleva, R. W. Boyd, and P. W. Milonni, "Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles," J. Opt. Soc. Am. B 24, 516-521 (2007). [CrossRef]
  23. J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992). [CrossRef] [PubMed]
  24. J. E. Sipe and R. W. Boyd, "Nanocomposite materials for nonlinear optics based on local field effects," in Optical Properties of Nanostructured Random Media, Vol. 82 of Topics in Applied Physics, V.M.Shalaev, ed. (Springer-Verlag Berlin, 2002), pp. 1-19. [CrossRef]
  25. R. W. Boyd and J. E. Sipe, "Nonlinear optical susceptibilities of layered composite materials," J. Opt. Soc. Am. B 11, 297-303 (1994). [CrossRef]
  26. R. W. Boyd, R. J. Gehr, G. L. Fischer, and J. E. Sipe, "Nonlinear optical properties of nanocomposite materials," Pure Appl. Opt. 5, 505-512 (1996). [CrossRef]
  27. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995). [CrossRef] [PubMed]
  28. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625-1631 (1997). [CrossRef]
  29. R. L. Nelson and R. W. Boyd, "Enhanced electro-optic response of layered composite materials," Appl. Phys. Lett. 74, 2417-2419 (1999). [CrossRef]
  30. R. J. Gehr, G. L. Fischer, and R. W. Boyd, "Nonlinear-optical response of porous-glass-based composite materials," J. Opt. Soc. Am. B 14, 2310-2314 (1997). [CrossRef]
  31. D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982). [CrossRef]
  32. R. Landauer, "The electrical resistance of binary metallic mixtures," J. Appl. Phys. 23, 779-784 (1952). [CrossRef]
  33. X. C. Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, "Effective-medium theory for weakly nonlinear composites," Phys. Rev. B 38, 10970-10973 (1988). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1997).
  35. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  36. H. A. Lorentz, The Theory of Electrons, 2nd ed. (Dover, 1965).
  37. A. E. Siegman, Lasers (University Science, 1986).
  38. R. S. Bennink, Y. K. Yoon, and R. W. Boyd, "Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited