OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 2821–2828

Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

Andri M. Gretarsson, Erika D’Ambrosio, Valery Frolov, Brian O’Reilly, and Peter K. Fritschel  »View Author Affiliations

JOSA B, Vol. 24, Issue 11, pp. 2821-2828 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the electromagnetic fields in a Pound–Drever–Hall locked, marginally unstable, Fabry–Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector located in Livingston, Louisiana. In the interferometer’s normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO 2 laser. During our study, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zero crossing point is no longer the point of maximum power in the cavity, nor is it the point where the input-beam mode in the cavity is maximized.

© 2007 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.5740) Physical optics : Resonance

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 12, 2007
Revised Manuscript: September 1, 2007
Manuscript Accepted: September 7, 2007
Published: October 17, 2007

Andri M. Gretarsson, Erika D'Ambrosio, Valery Frolov, Brian O'Reilly, and Peter K. Fritschel, "Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity," J. Opt. Soc. Am. B 24, 2821-2828 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Abbott, R. Abbott, and R. Adhikari, 'Detector description and performance for the first coincidence observations between LIGO and GEO,' Nucl. Instrum. Methods A517, 154-179 (2004), http://www.ligo.caltech.edu/docs/P/P030024-01/P030024-01.pdf. [CrossRef]
  2. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb and M. E. Zucker, 'LIGO: The Laser Interferometer Gravitational-wave Observatory,' Science 256, 325-333 (1992). [CrossRef] [PubMed]
  3. P. Fritschel, R. Bork, G. Gonzlez, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, 'Readout and control of a power-recycled interferometric gravitational-wave antenna,' Appl. Opt. 40, 4988-4998 (2001), http://resolver.caltech.edu/CaltechAUTHORS:FRIao01. [CrossRef]
  4. R. Weiss, 'Gravitational radiation,' Rev. Mod. Phys. 71S187-S196 (1999). [CrossRef]
  5. J. Hough, S. Rowan, and B. S. Sathyaprakash, 'The search for gravitational waves,' arXiv:gr-qc/0501007; http://arxiv.org/abs/gr-qc/0501007.
  6. R. Beusoleil, E. D'Ambrosio, B. Kells, J. Camp, E. Gustafson, and M. Fejer, 'Model of thermal wave-front distortion in interferometric gravitational-wave detectors. I. Thermal focusing,' J. Opt. Soc. Am. B 20, 1247-1268 (2003), http://arxiv.org/abs/gr-qc/0205124. [CrossRef]
  7. B. Kells and J. Camp, 'Absorption in the core optics and LIGO sensitivity,' LIGO Document Control Center, T970097-01 (1997), http://www.ligo.caltech.edu/docs/T/T970097-01.pdf.
  8. S. Ballmer, V. Frolov, R. Lawrence, W. Kells, G. Moreno, K. Mason, D. Ottaway, M. Smith, C. Vorvick, P. Willems, and M. Zucker, 'Thermal compensation system description,' LIGO Document Control Center, T050064-00 (2005), http://www.ligo.caltech.edu/docs/T/T050064-00.pdf.
  9. P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, and G. Gonzalez, 'Alignment of an interferometric gravitational wave detector,' Appl. Opt. 37, 6734-6747 (1998), http://www.ligo.caltech.edu/docs/P/P970017-A.pdf. [CrossRef]
  10. B. Bhawal, 'The effect of thermal lensing on wave-front sensor signals,' LIGO Document Control Center, T040066-00 (2004), http://www.ligo.caltech.edu/docs/T/T040066-00.pdf.
  11. E. D'Ambrosio and W. Kells, 'Carrier mode selective working point and side band imbalance in LIGO I,'Phys. Rev. D 73, 122002-26 (2006), http://authors.library.caltech.edu/3586/01/DAMprd06.pdf. [CrossRef]
  12. B. Bochner, 'Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics,' Ph.D. thesis (Massachusetts Institute of Technology, 1998), http://www.ligo.caltech.edu/docs/P/P980004-00.pdf.
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, 'Laser phase and frequency stabilization using an optical resonator,' Appl. Phys. B: Photophys. Laser Chem. 31, 97-105 (1983). [CrossRef]
  14. LIGO Livingston Obseratory, http://www.ligo-la.caltech.edu. The measurements described were made during March 2004.
  15. E. D'Ambrosio, 'Study of the different responsive behaviour of the sidebands in LIGO I,' Class. Quantum Grav. 21, S1113-S1120 (2004). [CrossRef]
  16. A. M. Gretarsson and V. Frolov, 'Excerpt from the LLO electronic detector logs,' LIGO Document Control Center, T070074-00 (2004), http://www.ligo.caltech.edu/docs/T/T070074-00.pdf.
  17. K. Goda, D. Ottaway, B. Connelly, R. Adhikari, N. Mavalvala, and A. Gretarsson, 'Frequency-resolving spatiotemporal wave-front sensor,' Opt. Lett. 29, 1452-1454 (2004), http://www.ligo.caltech.edu/docs/P/P030069-00.pdf. [CrossRef] [PubMed]
  18. B. Kells, 'Distorted PRM SB fields in Eikonal approximation,' LIGO Document Control Center, T070074-00(2004), http://www.ligo.caltech.edu/docs/T/T040195-02.pdf, and references to the LIGO Hanford interferometer logs therein.
  19. D. Ottaway, LIGO Project MIT, Massachusetts Institute of Technology, NW22-295, 185 Albany Street, Cambridge, Mass. 02139, USA. (personal communication, 2005).
  20. M. Regehr, 'Signal extraction and control for an interferometric gravitational wave detector,' Ph.d. thesis (California Institute of Technology, 1994), http://www.ligo.caltech.edu/docs/P/P940002-00.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited