OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 2860–2867

Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps

Yuexia Huang, Ya Yan Lu, and Shaojie Li  »View Author Affiliations


JOSA B, Vol. 24, Issue 11, pp. 2860-2867 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002860


View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient numerical method is developed for the modal analysis of two-dimensional photonic crystal waveguides (PCWs). Using the Dirichlet-to-Neumann (DtN) map of the supercell, the waveguide modes are solved from an eigenvalue problem formulated on two boundaries of the supercell, leading to significantly smaller matrices when it is discretized. The eigenvalue problem is linear even when the medium is dispersive. The DtN map of a domain is an operator that maps the wave field on the boundary of the domain to the normal derivative of the field. The DtN map of the supercell can be efficiently calculated by merging the DtN maps of the ordinary and defect unit cells.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 2, 2007
Revised Manuscript: September 11, 2007
Manuscript Accepted: September 14, 2007
Published: October 29, 2007

Citation
Yuexia Huang, Ya Yan Lu, and Shaojie Li, "Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps," J. Opt. Soc. Am. B 24, 2860-2867 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-11-2860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  4. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  5. K. Sakoda, T. Ueta, and K. Ohtaka, "Numerical analysis of eigenmodes localized at line defects in photonic lattices," Phys. Rev. B 56, 14905-14908 (1997). [CrossRef]
  6. M. Qiu and S. L. He, "Guided modes in a two-dimensional metallic photonic crystal waveguide," Phys. Lett. A 266, 425-429 (2000). [CrossRef]
  7. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Properties of the slab modes in photonic crystal optical waveguides," J. Lightwave Technol. 18, 1554-1564 (2000). [CrossRef]
  8. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  9. R. Zoli, M. Gnan, D. Castaldini, G. Bellanca, and P. Bassi, "Reformulation of the plane wave method to model photonic crystals," Opt. Express 11, 2905-2910 (2003). [CrossRef] [PubMed]
  10. A. David, H. Benisty, and C. Weisbuch, "Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape," Phys. Rev. B 73, 075107 (2006). [CrossRef]
  11. C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004). [CrossRef]
  12. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993). [CrossRef]
  13. H. Y. D. Yang, "Finite difference analysis of 2-D photonic crystals," IEEE Trans. Microwave Theory Tech. 44, 2688-2695 (1996). [CrossRef]
  14. D. C. Dobson, "An efficient method for band structure calculations in 2D photonis crystals," J. Comput. Phys. 149, 363-379 (1999). [CrossRef]
  15. W. Axmann and P. Kuchment, "An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case," J. Comput. Phys. 150, 468-481 (1999). [CrossRef]
  16. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  17. E. Moreno, D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B 65, 155120 (2002). [CrossRef]
  18. M. Marrone, V. F. Rodriguez-Esquerre, and H. E. Hernández-Figueroa, "Novel numerical method for the analysis of 2D photonic crystals: the cell method," Opt. Express 10, 1299-1304 (2002). [PubMed]
  19. S. Jun, Y. S. Cho, and S. Im, "Moving least-square method for the band-structure calculation of 2D photonic crystals," Opt. Express 11, 541-551 (2003). [CrossRef] [PubMed]
  20. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004). [CrossRef] [PubMed]
  21. S. Guo, F. Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," Opt. Express 12, 1741-1746 (2004). [CrossRef] [PubMed]
  22. X. Checoury and J. M. Lourtioz, "Wavelet method for computing band diagrams of 2D photonic crystals," Opt. Commun. 259, 360-365 (2006). [CrossRef]
  23. P. J. Chiang, C. P. Yu, and H. C. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E 75, 026703 (2007). [CrossRef]
  24. S. Y. Shi, C. H. Chen, and D. W. Prather, "Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs," Appl. Phys. Lett. 86, 43104 (2005). [CrossRef]
  25. J. B. Pendry, "Calculating photonic band structure," J. Phys. Condens. Matter 8, 1085-1108 (1996). [CrossRef]
  26. L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, "Photonic band structure calculations using scattering matrices," Phys. Rev. E 64, 046603 (2001). [CrossRef]
  27. K. Yasumoto, H. Jia, and K. Sun, "Rigorous modal analysis of two-dimensional photonic crystal waveguides," Radio Sci. 40, RS6S02 (2005). [CrossRef]
  28. H. Jia and K. Yasumoto, "Rigorous analysis of guidedmodes of two-dimensional metallic electromagnetic crystal waveguides," J. Electromagn. Waves Appl. 19, 1919-1933 (2005). [CrossRef]
  29. K. Dossou, M. A. Byrne, and L. C. Botten, "Finite element computation of grating scattering matrices and application to photonic crystal band calculations," J. Comput. Phys. 219, 120-143 (2006). [CrossRef]
  30. S. F. Helfert, "Numerical stable determination of Floquet modes and the application to the computation of band structures," Opt. Quantum Electron. 36, 87-107 (2004). [CrossRef]
  31. P. Joly, J.-R. Li, and S. Fliss, "Exact boundary conditions for periodic waveguides containing a local perturbation," Comm. Comp. Phys. 1, 945-973 (2006).
  32. M. J. Grote and J. B. Keller, "On nonreflecting boundary conditions," J. Comput. Phys. 122, 231-243 (1995). [CrossRef]
  33. J. Tausch and J. Butler, "Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps," J. Comput. Phys. 159, 90-102 (2000). [CrossRef]
  34. J. Tausch and J. Butler, "Efficient analysis of periodic dielectric waveguides using Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A 19, 1120-1128 (2002). [CrossRef]
  35. Y. X. Huang and Y. Y. Lu, "Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps," J. Lightwave Technol. 24, 3448-3453 (2006). [CrossRef]
  36. Y. X. Huang and Y. Y. Lu, "Modeling photonic crystals with complex unit cells by Dirichlet-to-Neumann maps," J. Comput. Math. 25, 337-349 (2007).
  37. S. J. Li and Y. Y. Lu, "Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells," J. Opt. Soc. Am. A 24, 2438-2442 (2007). [CrossRef]
  38. J. H. Yuan and Y. Y. Lu, "Photonic bandgap calculations using Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A 23, 3217-3222 (2006). [CrossRef]
  39. J. H. Yuan and Y. Y. Lu, "Computing photonic band structures by Dirichlet-to-Neumann maps: the triangular lattice," Opt. Commun. 273, 114-120 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited