OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 2988–2997

Whispering-gallery-mode resonators as frequency references. II. Stabilization

Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko, Nan Yu, and Lute Maleki  »View Author Affiliations

JOSA B, Vol. 24, Issue 12, pp. 2988-2997 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show theoretically that the absolute frequency stability of a solid-state millimeter-scale whispering gallery mode resonator can reach one part per 10 14 per 1 s integration time if proper crystalline material as well as proper stabilization technique is selected. Both the fluctuations of the resonator temperature and the fluctuations of the temperature in the mode volume can be measured with the sensitivity better than the fundamental thermodynamic limit and actively compensated.

© 2007 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(230.5750) Optical devices : Resonators
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Optical Devices

Original Manuscript: August 16, 2007
Manuscript Accepted: September 20, 2007
Published: November 14, 2007

Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko, Nan Yu, and Lute Maleki, "Whispering-gallery-mode resonators as frequency references. II. Stabilization," J. Opt. Soc. Am. B 24, 2988-2997 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  2. Ch. Salomon, D. Hils, and J. L. Hall, "Laser stabilization at the millihertz level," J. Opt. Soc. Am. B 5, 1576-1587 (1988). [CrossRef]
  3. T. Day, E. K. Gustafson, and R. L. Byer, "Sub-Hertz relative frequency stabilization of 2-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer," IEEE J. Quantum Electron. 28, 1106-1117 (1992). [CrossRef]
  4. J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, "A dye laser spectrometer for high resolution spectroscopy," Opt. Commun. 91, 131-139 (1992). [CrossRef]
  5. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, "Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level," Phys. Rev. Lett. 78, 4741-4744 (1997). [CrossRef]
  6. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, "Visible lasers with subhertz linewidths," Phys. Rev. Lett. 82, 3799-3802 (1999). [CrossRef]
  7. M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, J. von Zanthier, and H. Walther, "Towards an indium single-ion optical frequency standard," J. Phys. B 36, 553-559 (2003). [CrossRef]
  8. S. A. Webster, M. Oxborrow, and P. Gill, "Subhertz-linewidth Nd:YAG laser," Opt. Lett. 29, 1497-1499 (2004). [CrossRef] [PubMed]
  9. K. Numata, A. Kemery, and J. Camp, "Thermal-noise limit in the frequency stabilization of lasers with rigid cavities," Phys. Rev. Lett. 93, 250602 (2004). [CrossRef]
  10. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, "Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity," Opt. Lett. 30, 1815-1817 (2005). [CrossRef] [PubMed]
  11. T. Nazarova, F. Riehle, and U. Sterr, "Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser," Appl. Phys. B 83, 531-536 (2006). [CrossRef]
  12. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, "Diode laser with 1 Hz linewidth," Opt. Lett. 31, 736-738 (2006). [CrossRef] [PubMed]
  13. S. A. Webster, M. Oxborrow, and P. Gill, "Vibration insensitive optical cavity," Phys. Rev. A 75, 011801 (2007). [CrossRef]
  14. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, "Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15," Opt. Lett. 32, 641-643 (2007). [CrossRef] [PubMed]
  15. P.W.Barber and R.K.Chang, eds., Optical Effects Associated with Small Particles (World Scientific, 1988).
  16. R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, 1996). [CrossRef]
  17. M. H. Fields, J. Popp, and R. K. Chang, "Nonlinear optics in microspheres," Prog. Opt. 41, 1-95 (2000). [CrossRef]
  18. V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Usp. Fiz. Nauk 171, 1117-1129 (2001) V. V. Datsyuk and I. A. Izmailov,[Phys. Usp. 44, 1061-1073 (2001)]. [CrossRef]
  19. A. N. Oraevsky, "Whispering-gallery waves," Quantum Electron. 32, 377-400 (2002). [CrossRef]
  20. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  21. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering gallery modes I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  22. V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering gallery modes II: applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006). [CrossRef]
  23. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, "Kilohertz optical resonances in dielectric crystal cavities," Phys. Rev. A 70, 051804R (2004). [CrossRef]
  24. I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, "Ultra high Q crystalline microcavities," Opt. Commun. 265, 33-38 (2006). [CrossRef]
  25. S. Shiller and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Opt. Lett. 16, 130-132 (1991).
  26. M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999). [CrossRef]
  27. A. Serpenguzel, S. Arnold, and G. Griffel, "Excitation of resonances of microspheres on an optical fiber," Opt. Lett. 20, 654-656 (1994). [CrossRef]
  28. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering gallery mode resonances using a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  29. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  30. V. S. Ilchenko, X. S. Yao, and L. Maleki, "Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes," Opt. Lett. 24, 723-725 (1999). [CrossRef]
  31. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, "Morphology-dependent photonic circuit elements," Opt. Lett. 31, 1313-1315 (2006). [CrossRef] [PubMed]
  32. A. A. Savchenkov, A. B. Matsko, and L. Maleki, "White-light whispering gallery mode resonators," Opt. Lett. 31, 92-94 (2006). [CrossRef] [PubMed]
  33. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  34. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, "Low threshold optical oscillations in a whispering gallery mode CaF2 resonator," Phys. Rev. Lett. 93, 243905 (2004). [CrossRef]
  35. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, "Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode," Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  36. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity," Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  37. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998). [CrossRef]
  38. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, "Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations," J. Opt. Soc. Am. B 24, 1324-1335 (2007). [CrossRef]
  39. M. L. Gorodetsky and I. S. Grudinin, "Fundamental thermal fluctuations in microspheres," J. Opt. Soc. Am. B 21, 697-705 (2004). [CrossRef]
  40. F. L. Walls and J. R. Vig, "Fundamental limits on the frequency stabilities of crystal oscillators," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 576-589 (1995). [CrossRef]
  41. M. L. Gorodetsky and V. S. Ilchenko, "Thermal nonlinear effects in optical whispering-gallery microresonators," Laser Phys. 2, 1004-1009 (1992).
  42. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, "Nonstationary nonlinear effects in optical microspheres," J. Opt. Soc. Am. B 22, 459-465 (2005). [CrossRef]
  43. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006). [CrossRef] [PubMed]
  44. M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138to2326 nm," Appl. Opt. 41, 5275-5281 (2002). [CrossRef] [PubMed]
  45. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, "Optical materials characterization," National Bureau of Standards Tech. Note 993 (U.S. Government Printing Office, 1979).
  46. A. Smakula and V. Sils, "Precision density determination of large single crystals by hydrostatic weighing," Phys. Rev. 99, 1744-1746 (1955). [CrossRef]
  47. S. S. Todd, "Heat capacities at low temperatures and entropies of magnesium and calcium fluorides," J. Am. Chem. Soc. 71, 4115-4116 (1949). [CrossRef]
  48. S. Andersson and G. Backstron, "Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure," J. Phys. C 20, 5951-5962 (1987). [CrossRef]
  49. G. A. Slack, "Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals," Phys. Rev. 122, 1451-1464 (1961). [CrossRef]
  50. R. Srinivasan, "Elastic constants of calcium fluoride," Proc. Phys. Soc. London 72, 566-575 (1958). [CrossRef]
  51. K. S. Pitzer, W. V. Smith, and W. M. Latimer, "The heat capacity and entropy of barium fluoride, cesium perchlorate and lead phosphate," J. Am. Chem. Soc. 60, 1826-1828 (1938). [CrossRef]
  52. D. T. Morelli and J. Heremans, "Thermal conductivity of single-crystal barium fluoride," J. Appl. Phys. 63, 573-574 (1988). [CrossRef]
  53. M. O. Manasreh and D. O. Pederson, "Elastic constants of barium fluoride from 300to1250 K," Phys. Rev. B 31, 3960-3964 (1985). [CrossRef]
  54. G. Ghosh, "Handbook of thermo-optic coefficients of optical materials with applications," (Academic, 1998).
  55. S. M. Etzel, A. H. Rose, and C. M. Wang, "Dispersion of the temperature retardance in SiO2 and MgF2," Appl. Opt. 39, 5796-5800 (2000). [CrossRef]
  56. A. Duncanson and R. W. H. Stevenson, "Some properties of magnesium fluoride crystallized from the melt," Proc. Phys. Soc. London 72, 1001-1006 (1958). [CrossRef]
  57. M. J. Dodge, "Refractive properties of magnesium fluoride," Appl. Opt. 23, 1980-1985 (1984). [CrossRef] [PubMed]
  58. J. D. Beasley, "Thermal conductivities of some novel nonlinear materials," Appl. Opt. 33, 1000-1003 (1994). [PubMed]
  59. I. H. Malitson, "Refraction and dispersion of synthetic sapphire," J. Opt. Soc. Am. 52, 1377-1379 (1962). [CrossRef]
  60. W. M. Yim and R. J. Paff, "Thermal expansion of AIN, sapphire, and silicon," J. Appl. Phys. 45, 1456-1457 (1974). [CrossRef]
  61. D. A. Ditmars, S. A. Ishihara, S. S. Chang, G. Bernstein, and E. D. West, "Enthalpy and heat-capacity standard reference material—synthetic sapphire (α-Al2O3) from 10to2250 K," J. Res. Natl. Bur. Stand. 87, 159-163 (1982).
  62. T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Phys. D 16, L97-L100 (1983). [CrossRef]
  63. T. H. K. Barron, J. F. Collins, T. W. Smith, and G. K. White, "Thermal expansion, Gruneisen functions and static lattice properties of quartz," J. Phys. C 15, 4311-4326 (1982). [CrossRef]
  64. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  65. C. Audoin, "Frequency metrology," in Proceedings of the International School of Physics "Enrico Fermi," Cource LXVIII, A.F.Milone and P.Giacomo, eds. (North-Holland, 1980), pp. 169-222.
  66. V. B. Braginsky and S. P. Vyatchanin, "Gravitational waves and limiting stability of self-excited oscillators," Sov. Phys. JETP 74, 828-832 (1978).
  67. V. B. Braginsky, "Experiments with probe masses," Proc. Natl. Acad. Sci. U.S.A. 104, 3677-3680 (2007). [CrossRef] [PubMed]
  68. S. Biernacki and M. Scheffler, "Negative thermal expansion of diamond and zinc-blende semiconductors," Phys. Rev. Lett. 63, 290-293 (1989). [CrossRef] [PubMed]
  69. K. Shimamura, H. Sato, A. Bensalah, V. Sudesh, H. Machida, N. Sarukura, and T. Fukuda, "Crystal growth of fluorides for optical applications," Cryst. Res. Technol. 36, 801-813 (2001). [CrossRef]
  70. A. W. Sleight, "Isotropic negative thermal expansion," Annu. Rev. Mater. Sci. 28, 29-43 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited