OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 3023–3033

Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb 3 + -doped K Y 3 F 10 cubic crystal

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato  »View Author Affiliations


JOSA B, Vol. 24, Issue 12, pp. 3023-3033 (2007)
http://dx.doi.org/10.1364/JOSAB.24.003023


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the prediction of the infrared laser emission in the Yb 3 + -doped cubic K Y 3 F 10 crystal that can be pumped by a laser diode. Bulky single crystals have been grown by the Czochralski technique at Tohoku University, and crystalline fibers have been grown by the laser heated pedestal growth technique at Claude Bernard/Lyon 1 University. Absorption and emission spectra were recorded to contribute to the determination of electronic and vibronic energy levels by using in addition the Raman spectrum and the barycenter law. Yb 3 + concentration dependence of the F 5 2 2 experimental decay time was analyzed using concentration gradient fibers in order to attempt to understand involved concentration quenching mechanisms. Under Yb 3 + ion infrared pumping, self-trapping has been observed at low concentration, whereas upconversion nonradiative energy transfer to unexpected rare-earth impurities ( Er 3 + , Tm 3 + ) has been observed in the visible region and interpreted with a limited diffusion process within the Yb 3 + doping ion subsystem toward impurities. Main parameters useful for a theoretical approach of laser potentiality have been given and compared with other fluoride crystals.

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(300.6360) Spectroscopy : Spectroscopy, laser
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 8, 2007
Revised Manuscript: October 4, 2007
Manuscript Accepted: October 4, 2007
Published: November 21, 2007

Citation
M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato, "Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal," J. Opt. Soc. Am. B 24, 3023-3033 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-12-3023


Sort:  Year  |  Journal  |  Reset  

References

  1. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993). [CrossRef]
  2. A. Brenier and G. Boulon, "New criteria to choose the best Yb3+-doped laser crystals," Europhys. Lett. 55, 647-651 (2001). [CrossRef]
  3. A. Brenier and G. Boulon, "Overview of the best Yb3+-doped laser crystals," J. Alloys Compd. 323-324, 210-213 (2002).
  4. G. L. Bourdet, "New evaluation of ytterbium-doped materials for CW laser applications," Opt. Commun. 198, 411-415 (2001). [CrossRef]
  5. L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. Th. Cohen-Adad, "Correlation between dopant content and excited-state dynamics properties inEr3+-Yb3+-codoped Y2O3 by using a new combinatorial method," Opt. Mater. 19, 59-66 (2002). [CrossRef]
  6. L. Laversenne, C. Goutaudier, Y. Guyot, M. Th. Cohen-Adad, and G. Boulon, "Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications," J. Alloys Compd. 341, 214-219 (2002). [CrossRef]
  7. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003). [CrossRef]
  8. A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003). [CrossRef]
  9. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005). [CrossRef]
  10. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006). [CrossRef]
  11. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, "Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal," J. Opt. Soc. Am. B 23, 676-683 (2006). [CrossRef]
  12. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, "Crystal growth, Yb3+ spectroscopy, concentration quenching analysis, and potentiality of laser emission in Ca1−XYbXF2+X," J. Phys. Condens. Matter 16, 1501-1521 (2004). [CrossRef]
  13. G. Boulon, M. Ito, C. Goutaudier, and Y. Guyot, "Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb[3+]-doped CaF CaF[2] laser crystals," J. Cryst. Growth 292, 230-235 (2006). [CrossRef]
  14. S. M. Kaczmarek, A. Bensalah, and G. Boulon, "γ-ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals," Opt. Mater. 28, 123-128 (2006). [CrossRef]
  15. A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications," J. Lumin. 122-123, 444-446 (2007). [CrossRef]
  16. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004). [CrossRef]
  17. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon, "From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals," Mol. Phys. 102, 1119-1132 (2004). [CrossRef]
  18. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloys Compd. 380, 15-26 (2004). [CrossRef]
  19. J.-P. R.. Wells, A. Sugiyama, T. P. J. Han, and H. G. Gallagher, "Laser site selective excitation of KY3F10-doped with samarium," J. Lumin. 85, 91-102 (1999). [CrossRef]
  20. A. P. Ayala, M. A. S. Oliveira, J.-Y. Gesland, and R. L. Moreira, "Electrical and dielectric investigations of the conduction processes in KY3F10 crystals," J. Phys. Condens. Matter 10, 5161-5164 (1998). [CrossRef]
  21. M. F. Joubert, G. Boulon, and F. Gaume, "Energy transfer between the Eu2+ sites in KY3F10 single crystals," Chem. Phys. Lett. 80, 367-370 (1981). [CrossRef]
  22. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, "Diode-pumped Pr3+KY3F10 red laser," Opt. Lett. 32, 1462-1464 (2007). [CrossRef] [PubMed]
  23. A. Braud, P. Y. Tigréat, J. L. Doualan, and R. Moncorgé, "Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser," Appl. Phys. B 72, 909-911 (2001). [CrossRef]
  24. K. J. Kim, A. Jouini, A. Yoshikawa, R. Simura, G. Boulon, and T. Fukuda, "Growth and optical properties of Pr,Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence," J. Cryst. Growth 299, 171-177 (2007). [CrossRef]
  25. M. Ito, C. Goutaudier, K. Lebbou, S. Hraiech, and G. Boulon, "Growth of Yb3+:KY3F10 single crystals by laser heated pedestal growth (LHPG) technique," J. Cryst. Growth (to be published).
  26. R. Yu. Abdulsabirov, A. V. Vinokurov, V. A. Ivanshin, I. N. Kurkin, and E. A. Pudovik, "Optical spectra and spin lattice relaxation of rare earth ions in KY3F10 crystals," Opt. Spectrosc. 63, 55-59 (1987).
  27. A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, "Electron-phonon coupling effects on Yb3+ spectra in several laser crystals," J. Phys. Condens. Matter 11, 3769-3778 (1999). [CrossRef]
  28. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, "Energy levels of Yb3+ in gallium and aluminum garnets. I. Spectra," Phys. Rev. 159, 245-251 (1967). [CrossRef]
  29. F. Auzel, "On the maximum splitting of the (F7/22) ground state in Yb3+-doped solid state laser materials," J. Lumin. 93, 129-135 (2001). [CrossRef]
  30. P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, "Spectroscopic and crystal-field analysis of new Yb-doped laser materials," J. Phys. Condens. Matter 13, 5427-5447 (2001). [CrossRef]
  31. P. Porcher and P. Caro, "Crystal field parameters for Eu3+ in KY3F10," J. Chem. Phys. 65, 89-94 (1976). [CrossRef]
  32. J.-P. R. Wells, M. Yamaga, T. P. J. Han, and H. G. Gallagher, "Infrared absorption, laser excitation, and crystal-field analyses of the C4v symmetry centre in KY3F10 doped with Pr3+," J. Phys. Condens. Matter 12, 5297-5306 (2000). [CrossRef]
  33. D. S. Sumita and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media," Opt. Lett. 19, 1343-1345 (1994). [CrossRef]
  34. N. Uehara, K. Ueda, and Y. Kubota, "Spectroscopic measurement of a high-concentration Yb3+:LiYF4 crystal," Jpn. J. Appl. Phys., Part 2 35, L499-L501 (1996). [CrossRef]
  35. M. P. Hehlen, "Effect of radiation trapping on measured excited-state lifetimes in solids," in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series, S.A.Payne and C.Pollock, eds. (Optical Society of America, 1996), 530.
  36. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982). [CrossRef]
  37. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997). [CrossRef]
  38. M. J. Weber, "Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153-3159 (1971). [CrossRef]
  39. I. R. Martín, Y. Guyot, M. F. Joubert, R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko, "Stark level structure and oscillator strengths of Nd3+ ion in different fluoride single crystals," J. Alloys Compd. 323-324, 763-767 (2001). [CrossRef]
  40. L. Zhang and H. Hu, "The effect of OH− on IR emission of Nd3+, Yb3+, and Er3+ doped tetraphosphate glasses," J. Phys. Chem. Solids 63, 575-579 (2002). [CrossRef]
  41. P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002). [CrossRef]
  42. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, "Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions," Opt. Mater. 5, 127-136 (1996). [CrossRef]
  43. F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002). [CrossRef]
  44. G. Boulon, "Why so deep research on Yb3+-doped optical inorganic materials?," J. Alloys Compd. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited