OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 3064–3071

Synthesis and optical spectroscopy of a hybrid cadmium sulfide–dendrimer nanocomposite

S. K. Gayen, M. Brito, B. B. Das, G. Comanescu, X. C. Liang, M. Alrubaiee, R. R. Alfano, C. Gonzalez, A. H. Byro, D. L. V. Bauer, and V. Balogh-Nair  »View Author Affiliations

JOSA B, Vol. 24, Issue 12, pp. 3064-3071 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hybrid nanocomposites of cadmium sulfide ( CdS ) quantum dots and poly(propyleneimine) dendrimer having a 1,4-diaminobutane core have been produced by colloidal synthesis in degassed methanol at room temperature using third-, fourth-, and fifth-generation (G5.0) dendrimers, and their spectroscopic properties have been investigated. The nanoparticles fluoresced from 375 to 650 nm under near-ultraviolet excitation, and their absorption spectra exhibited a strong blueshift of the band edge compared to that of the bulk CdS . The stability of nanocomposites depended significantly, while the size and spectroscopic properties exhibited a weaker dependence, on the dendrimer generation. Most compact and stable nanoparticles were obtained with G5.0 dendrimers. Average diameter was estimated to be 2.2 ± 0.3 nm , assuming nanoparticles of spherical shape within an infinite well potential. The room-temperature luminescence has a fast component with 165 ± 5 ps lifetime and a slow component with a 40 ± 2 ns lifetime. The luminescence is partially polarized with an initial anisotropy of 0.39 ± 0.02 .

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 16, 2007
Revised Manuscript: October 19, 2007
Manuscript Accepted: October 23, 2007
Published: November 30, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

S. K. Gayen, M. Brito, B. B. Das, G. Comanescu, X. C. Liang, M. Alrubaiee, R. R. Alfano, C. Gonzalez, A. H. Byro, D. L. V. Bauer, and V. Balogh-Nair, "Synthesis and optical spectroscopy of a hybrid cadmium sulfide-dendrimer nanocomposite," J. Opt. Soc. Am. B 24, 3064-3071 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, "Excitons and optical nonlinearities in hybrid organic-inorganic nanostructures," J. Phys. Condens. Matter 10, 9369-9400 (1998). [CrossRef]
  2. N. Q. Huong and J. L. Birman, "Quantum dot lattice embedded in an organic medium: hybrid exciton state and optical response," Phys. Rev. B 61, 13131-13136 (1999). [CrossRef]
  3. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000). [CrossRef] [PubMed]
  4. A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Eng. 7, 55-76 (2005). [CrossRef] [PubMed]
  5. C. F. Landes, M. Braun, and M. A. El-Sayed, "On the nanoparticle to molecular size transition: fluorescence quenching studies," J. Phys. Chem. B 10, 10554-10558 (2001). [CrossRef]
  6. W. C. W. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998). [CrossRef] [PubMed]
  7. A. I. Ekimov and A. A. Onushchenko, "Quantum size effect in three-dimensional microscopic semiconductor crystals," JETP Lett. 34, 345-348 (1981).
  8. Al. L. Efros and A. L. Efros, "Interband absorption of light in a semiconductor sphere," Fiz. Tekh. Poluprovodn. (S.-Peterburg) 16, 1209-1214 (1982) Al. L. Efros and A. L. Efros,[Sov. Phys. Semicond. 16, 772-775 (1982).]
  9. J. M. J. Frechet and D. Tomalia, eds., Dendrimers and Other Dendritic Polymers (Wiley, 2001). [CrossRef]
  10. A. W. Bosman, H. M. Janssen, and E. W. Meijer, "About dendrimers: structure, physical properties, and applications," Chem. Rev. (Washington, D.C.) 99, 1665-1688 (1999). [CrossRef]
  11. L. Peng, C. Chen, C. R. Gonzalez, and V. Balogh-Nair, "Bioorganic studies in AIDS: synthetic antifungals against Pneumocystis carinii based on the multivalency concept," Int. J. Mol. Sci. 3, 1145-1161 (2002). [CrossRef]
  12. K. Sooklal, L. H. Hanus, H. J. Ploehn, and C. J. Murphy, "A blue emitting CdS-dendrimer nanocomposite," Adv. Mater. (Weinheim, Ger.) 10, 1083-1087 (1998). [CrossRef]
  13. B. I. Lemon and R. M. Crooks, "Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots," J. Am. Chem. Soc. 122, 12886-12887 (2000). [CrossRef]
  14. The bandgaps of CdS at 300K for both the wurzite and zinc-blende structures are given to be 2.42eV and 2.5eV.
  15. S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, 1981), pp. 848-849.
  16. "Veeco Learning Center--Lattice Parameters and Bandgap data," http://www.veeco.com/learning/learninglowbarlattice.asp
  17. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, 1993).
  18. D. W. Palmer, www.semiconductors.co.uk, 2002.06.
  19. L. E. Brus, "Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state," J. Chem. Phys. 80, 4403-4409 (1984). [CrossRef]
  20. L. Spanhel, M. Haase, H. Weller, and A. Henglein, "Photochemistry of colloidal semiconductors. Surface modification and stability of strong luminescing CdS particles," J. Am. Chem. Soc. 109, 5649-5655 (1987). [CrossRef]
  21. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, and C. J. Murphy, "Luminescence spectral properties of CdS nanoparticles," J. Phys. Chem. B 103, 7613-7620 (1999). [CrossRef]
  22. M. O'Neil, J. Marohn, and G. McLendon, "Dynamics of electron hole pair recombination in semiconductor clusters," J. Phys. Chem. B 94, 4356-4363 (1990).
  23. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, "Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic state," J. Phys. Chem. B 90, 3393-3399 (1986).
  24. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999), pp. 291-366.
  25. N. Q. Huong and J. L. Birman, "Hybrid exciton state in a quantum dot-dendrite system: Green functions," Phys. Rev. B 67, 075313 (2003). [CrossRef]
  26. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, "Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters," Phys. Rev. Lett. 65, 1623-1626 (1990). [CrossRef] [PubMed]
  27. Y. Wang, "Photophysical and photochemical processes in semiconductor nanoclusters," in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bunau, eds. (Wiley, 1995), Vol. 19, pp. 179-233.
  28. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998). [CrossRef] [PubMed]
  29. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E=S,Se,Te), semiconductor nanocrystallites," J. Am. Chem. Soc. 11, 8706-8715 (1993). [CrossRef]
  30. M. Nirmal and L. Brus, "Luminescence photophysics in semiconductor nanocrystals," Acc. Chem. Res. 32, 407-414 (1999). [CrossRef]
  31. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, "Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states," J. Chem. Phys. 96, 946-954 (1992). [CrossRef]
  32. M. Nirmal, C. B. Murray, and M. G. Bawendi, "Fluorescence-linen arrowing in CdSe quantum dots: surface localization of the photogenerated exciton," Phys. Rev. B 50, 2293-2300 (1994). [CrossRef]
  33. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, "Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states," Phys. Rev. B 54, 4843-4856 (1996). [CrossRef]
  34. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, K. Nowaczyk, and C. J. Murphy, "Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effect of DNA oligomer binding," Anal. Biochem. 280, 128-136 (2000). [CrossRef] [PubMed]
  35. F. Pellegrino, P. Sekuler, and R. R. Alfano, "Temperature dependence of the 735nm fluorescence kinetics from spinach measured by picosecond laser streak camera system," Photochem. Photobiophys. 2, 15-23 (1983).
  36. A. Szabo, "Theory of polarized fluorescent emission in uniaxial liquid crystals," J. Chem. Phys. 72, 4620-4626 (1980). [CrossRef]
  37. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001). [CrossRef] [PubMed]
  38. X. Peng, L. Manna, W. Yang, J. Wickham, E. Sher, A. Kadavanich, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Nature 404, 59-61 (2001). [CrossRef]
  39. S. Kan, T. Mokari, E. Rothenberg, and U. Banin, "Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods," Nat. Mater. 2, 155-158 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited