OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 391–397

Integrated conditional teleportation and readout circuit based on a photonic crystal single chip

Durdu Ö. Güney and David A. Meyer  »View Author Affiliations

JOSA B, Vol. 24, Issue 2, pp. 391-397 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the design of an integrated conditional quantum teleportation circuit and a readout circuit using a two-dimensional photonic crystal single chip. Fabrication and testing of the proposed quantum circuit can be accomplished with current or near future semiconductor process technology and experimental techniques. The readout part of our device can also be used on its own or integrated with other compatible optical circuits to achieve atomic state detection. Further improvement of the device in terms of compactness and robustness could be achieved by integrating it with sources and detectors in the optical regime.

© 2007 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(220.4830) Optical design and fabrication : Systems design
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Information

Original Manuscript: May 2, 2006
Revised Manuscript: August 18, 2006
Manuscript Accepted: September 26, 2006
Published: January 26, 2007

Durdu Ö. Güney and David A. Meyer, "Integrated conditional teleportation and readout circuit based on a photonic crystal single chip," J. Opt. Soc. Am. B 24, 391-397 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  2. S.-B. Zheng, "Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement," Phys. Rev. A 69, 064302 (2004). [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  4. E. S. Guerra, "Teleportation of atomic states via cavity quantum electrodynamics," http://arxiv.org/abs/quant-ph/0409194.
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  6. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001). [CrossRef]
  7. D. Ö. Güney and D. A. Meyer, "Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity," J. Opt. Soc. Am. B 24, 283-294 (2007). [CrossRef]
  8. Shi-Biao Zheng, Department of Electronic Science and Applied Physics, Fuzhou University, Fuzhou, 350002, China (personal communication, 2005).
  9. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, "Coherent control of an atomic collision in a cavity," Phys. Rev. Lett. 87, 037902 (2001). [CrossRef] [PubMed]
  10. L. Davidovich, A. Maali, M. Brune, J. M. Raimond, and S. Haroche, "Quantum switches and nonlocal microwave fields," Phys. Rev. Lett. 71, 2360-2363 (1993). [CrossRef] [PubMed]
  11. X. Maitre, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, "Quantum memory with a single photon in a cavity," Phys. Rev. Lett. 79, 769-772 (1997). [CrossRef]
  12. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  13. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  14. E. Waks and J. Vuckovic, "Coupled mode theory for photonic crystal cavity-waveguide interaction," Opt. Express 13, 5064-5073 (2005). [CrossRef] [PubMed]
  15. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  16. N. Ramsey, Molecular Beams (Clarendon, 1956).
  17. A. Martinez, A. Garcia, P. Sanchis, and J. Marti, "Group velocity dispersion model of coupled-cavity waveguides in photonic crystals," J. Opt. Soc. Am. A 20, 147-150 (2003). [CrossRef]
  18. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  19. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electro-magnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002). [CrossRef]
  20. S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. R. Pearsall, and D. Nedelikovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002). [CrossRef]
  21. T. Koponen, Tunnelling of light in photonic crystal waveguides (Thesis, University of Jyvskyl, Finland, 2003).
  22. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," Appl. Phys. Lett. 78, 1487-1489 (2001). [CrossRef]
  23. P. Domokos, P. Horak, and H. Ritsch, "Quantum description of light pulse scattering on a single atom in waveguides," http://arxiv/abs/quant-ph/0202005.
  24. N. Vats, T. Rudolph, and S. John, "Quantum information processing in localized modes of light within a photonic band-gap material," http://arxiv.org/abs/quant-ph/9910046.
  25. S. Zippilli, D. Vitali, P. Tombesi, and J.-M. Raimond, "Scheme for decoherence control in microwave cavities," Phys. Rev. 67, 052101 (2003). [CrossRef]
  26. J. van Slageren, S. Vongtragoola, B. Gorshunovab, A. A. Mukhinb, N. Karla, J. Krzystekc, J. Telserd, A. Mllere, C. Sangregoriof, D. Gatteschif, and M. Dressela, "Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials," Phys. Chem. Chem. Phys. 5, 3837-3843 (2003). [CrossRef]
  27. "Frequency stabilization and control system for backward-wave oscillators of 35-400GHz range," Institute of Applied Physics Russian Academy of Sciences, Microwave Spectroscopy Laboratory, Novogorod, 603950 Russia, http://www.mwl.sci-nnov.ru/35.html.
  28. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991). [CrossRef]
  29. F. Ramos-Mendieta and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane," Phys. Rev. B 59, 15112-15120 (1999). [CrossRef]
  30. Y. A. Vlasov, N. Moll, and S. J. McNab, "Observation of surface states in a truncated photonic crystal slab," Opt. Lett. 29, 2175-2177 (2004). [CrossRef] [PubMed]
  31. T. Ochiai and J. Sanchez-Dehesa, "Superprism effect in opal-based photonic crystals," Phys. Rev. B 64, 245113 (2001). [CrossRef]
  32. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, "Feasibility of detecting single atoms using photonic bandgap cavities," http://arxiv.org/abs/quant-ph/0402093.
  33. A. Sugitatsu, T. Asano, and S. Noda, "Line-defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 86, 171106 (2005). [CrossRef]
  34. X. Checoury, P. Boucaud, J.-M. Lourtioz, O. Gauthier-Lafaye, S. Bonnefont, D. Mulin, J. Valentin, F. Lozes-Dupuy, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, and G. H. Duan, "1.5μm room-temperature emission of square-lattice photonic-crystal waveguide lasers with a single line defect," Appl. Phys. Lett. 86, 151111 (2005). [CrossRef]
  35. S. Bandyopadhyay, "Prospects for a quantum dynamic random access memory (Q-DRAM)," http://arxiv.org/abs/quant-ph/0101058.
  36. P. Kwiat and G. Milburn, "Optical approaches to quantum information processing and quantum computing," in A Quantum Information Science and Technology Roadmap, 2004, http://qist.lanl.gov.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited