Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Feasibility of achieving gain in transition to the ground state of C VI at 3.4 nm

Not Accessible

Your library or personal account may give you access

Abstract

We present numerical studies of recombination gain in the transition to the ground state of H-like C (21 transition at λ=3.4nm). It is shown that high gain (up to about 180cm1) can be achieved using currently available, relatively compact, laser technology. The model includes the ionization of the plasma by an ultraintense, ultrashort laser pulse, followed by plasma expansion, cooling, and recombination. Transient population inversion is generated during the recombination process. We investigate the behavior of the gain with respect to different plasma parameters and pump pulse parameters and explain how the different properties of the plasma and the pump pulse affect the gain.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical simulation of the effect of hydrogen on recombination gain in the transition to ground state of Li III

Yoav Avitzour and Szymon Suckewer
J. Opt. Soc. Am. B 23(5) 925-931 (2006)

X-ray laser studies of recombining lithium plasmas created by optical field ionization

K. M. Krushelnick, W. Tighe, and S. Suckewer
J. Opt. Soc. Am. B 13(2) 306-311 (1996)

Radiation cooling and gain calculation for C vi 182-Å line in carbon–selenium plasma

C. H. Nam, E. Valeo, S. Suckewer, and U. Feldman
J. Opt. Soc. Am. B 3(9) 1199-1205 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved