OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 6 — Jun. 1, 2007
  • pp: 1344–1353

Coulomb effects on quantum-well luminescence spectra and radiative recombination times

Walter Hoyer, Mackillo Kira, Stephan W. Koch, Jörg Hader, and Jerome V. Moloney  »View Author Affiliations

JOSA B, Vol. 24, Issue 6, pp. 1344-1353 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microscopic theory based on Bloch electrons and holes in a two-band approximation is applied in order to compute absorption and luminescence spectra for GaAs-type quantum wells at room temperature. Special focus is set to investigate the effect of the Coulomb interaction on the linewidth of the luminescence spectra and on the radiative recombination rates.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: December 18, 2006
Revised Manuscript: February 22, 2007
Manuscript Accepted: February 24, 2007
Published: May 17, 2007

Walter Hoyer, Mackillo Kira, Stephan W. Koch, Jörg Hader, and Jerome V. Moloney, "Coulomb effects on quantum-well luminescence spectra and radiative recombination times," J. Opt. Soc. Am. B 24, 1344-1353 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  2. W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer-Verlag, 1999).
  3. M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006). [CrossRef]
  4. J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995). [CrossRef]
  5. J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005). [CrossRef]
  6. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996). [CrossRef] [PubMed]
  7. L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998). [CrossRef]
  8. A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004). [CrossRef]
  9. J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005). [CrossRef]
  10. W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999). [CrossRef]
  11. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006). [CrossRef] [PubMed]
  12. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999). [CrossRef]
  13. W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003). [CrossRef]
  14. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).
  15. J. Fricke, "Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism," Ann. Phys. (N.Y.) 252, 479-498 (1996). [CrossRef]
  16. M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006). [CrossRef]
  17. F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997). [CrossRef]
  18. N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998). [CrossRef]
  19. M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998). [CrossRef]
  20. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004). [CrossRef] [PubMed]
  21. M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006). [CrossRef]
  22. X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998). [CrossRef]
  23. The least-squares polynomial fit has been performed for [B(ne)]−1, which is a first-order polynomial in carrier density ne.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited