OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 6 — Jun. 1, 2007
  • pp: 1365–1368

Highly efficient generation of entangled photon pair by spontaneous parametric downconversion in defective photonic crystals

Yong Zeng, Ying Fu, Xiaoshuang Chen, Wei Lu, and Hans Ågren  »View Author Affiliations

JOSA B, Vol. 24, Issue 6, pp. 1365-1368 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the process of spontaneous parametric downconversion in a one-dimensional defective quadratic nonlinear photonic crystal. It is shown that the strong confinements of both the pump and signal waves around the defective layer result in a giant enhancement of the entangled photon-pair generation. An enhancement factor as high as 3.4 × 10 6 is obtained in our defective structure based on the dual-localized modes. Furthermore, the linewidth of the downconverted fields is only 0.1 nm . Such a photonic crystal structure can be applied as a highly efficient source of entangled photon pairs for highly integrated all-optical circuits.

© 2007 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: August 10, 2006
Revised Manuscript: February 5, 2007
Manuscript Accepted: March 6, 2007
Published: May 17, 2007

Yong Zeng, Ying Fu, Xiaoshuang Chen, Wei Lu, and Hans Ågren, "Highly efficient generation of entangled photon pair by spontaneous parametric downconversion in defective photonic crystals," J. Opt. Soc. Am. B 24, 1365-1368 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: an Introduction to Basic Theoretical Concepts and Experiments (Springer, 2001).
  2. P. Kumar, P. Kwiat, A. Migdall, S. W. Nam, J. Vuckovic, and F. N. C. Wong, "Photonic technologies for quantum information processing," Quantum Inf. Process. 3, 215-231 (2004). [CrossRef]
  3. M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, "Nonlinear photonic crystals as source of entangled photons," Phys. Rev. Lett. 93, 040504 (2004). [CrossRef] [PubMed]
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  6. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  7. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993). [CrossRef]
  8. A. A. Krokhin, P. Halevi, and J. Arriaga, "Long-wavelength limit (homogenization) for two-dimensional photonic crystals," Phys. Rev. B 65, 115208 (2002). [CrossRef]
  9. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1976).
  10. A. N. Vamivakas, B. E. A. Saleh, A. V. Sergienko, andM. C. Teich, "Theory of spontaneous parametric down-conversion from photonic crystals," Phys. Rev. A 70, 043810 (2004). [CrossRef]
  11. G. D. Giuseppe, M. Atature, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity," Phys. Rev. A 66, 013801 (2002). [CrossRef]
  12. W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, "Bloch theory of entangled photon generation in nonlinear photonic crystals," Phys. Rev. A 72, 043815 (2005). [CrossRef]
  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  14. M. Centini, J. Perina. Jr., L. Sciscione, C. Sibilia, M. Scalora, M. J. Bloemer, and M. Bertolotti, "Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals," Phys. Rev. A 72, 033806 (2005). [CrossRef]
  15. M. Bahl, N.-C. Panoiu, and R. M. Osgood. Jr., "Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional Kerr defects," Phys. Rev. E 67, 056604 (2003). [CrossRef]
  16. J. Martorell and R. Corbalan, "Enhancement of second harmonic generation in a periodic structure with a defect," Opt. Commun. 108, 319-323 (1994). [CrossRef]
  17. J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, "Second-harmonic generation in local modes of a truncated periodic structure," Opt. Lett. 20, 1746-1748 (1995). [CrossRef] [PubMed]
  18. B. Shi, Z. M. Jiang, and X. Wang, "Defective photonic crystals with greatly enhanced second-harmonic generation," Opt. Lett. 26, 1194-1196 (2001). [CrossRef]
  19. F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, "Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes," Phys. Rev. B 70, 245109 (2004). [CrossRef]
  20. Y. Zeng, X. Chen, and W. Lu, "Optical limiting in defective quadratic nonlinear photonic crystals," J. Appl. Phys. 99, 123107 (2006). [CrossRef]
  21. Y. Jeong and B. Lee, "Matrix analysis for layered quasi-phase-matched media considering multiple reflection and pump wave depletion," IEEE J. Quantum Electron. 35, 162-178 (1999). [CrossRef]
  22. G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, "Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings," Phys. Rev. E 67, 016606 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited