OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1771–1785

Fiber supercontinuum sources (Invited)

Goëry Genty, Stéphane Coen, and John M. Dudley  »View Author Affiliations


JOSA B, Vol. 24, Issue 8, pp. 1771-1785 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001771


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review supercontinuum generation in optical fibers for particular cases where the nonlinear spectral broadening is induced by pump radiation from fiber-format sources. Based on numerical simulations, our paper is intended to provide experimental design guidelines tailored ytterbium and erbium-based pumps around 1060 and 1550 nm , respectively. In particular, at 1060 nm , we consider conditions under which the generated spectra are phase and intensity stable, and we address the dependence of the supercontinuum coherence on the input pulse parameters and the fiber length. At 1550 nm , special attention is paid to the case of dispersion-flattened dispersion-decreasing fiber, where we revisit the underlying physics in detail and explicitly examine the use of such fiber for supercontinuum generation with pumps of peak power in the range 200 1200 W and sub-10m fiber lengths. We show that supercontinuum generation under such conditions can be highly coherent and can be applied to nonlinear pulse compression.

© 2007 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Ultrafast Fiber Lasers

History
Original Manuscript: November 1, 2006
Revised Manuscript: January 19, 2007
Manuscript Accepted: January 22, 2007
Published: July 19, 2007

Citation
Goëry Genty, Stéphane Coen, and John M. Dudley, "Fiber supercontinuum sources (Invited)," J. Opt. Soc. Am. B 24, 1771-1785 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970). [CrossRef]
  3. R.R.Alfano, ed., The Supercontinuum Laser Source (Springer, 2006). [CrossRef]
  4. C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976). [CrossRef]
  5. R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984). [CrossRef]
  6. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987). [CrossRef]
  7. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl. Opt. 35, 2548-2553 (1996). [CrossRef] [PubMed]
  8. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987). [CrossRef]
  9. A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett. 13, 770-772 (1988). [CrossRef] [PubMed]
  10. J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993). [CrossRef]
  11. Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987). [CrossRef]
  12. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989). [CrossRef] [PubMed]
  13. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989). [CrossRef]
  14. T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993). [CrossRef]
  15. K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993). [CrossRef]
  16. H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994). [CrossRef]
  17. K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994). [CrossRef]
  18. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994). [CrossRef]
  19. T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994). [CrossRef]
  20. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994). [CrossRef]
  21. T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995). [CrossRef]
  22. T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995). [CrossRef]
  23. K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995). [CrossRef]
  24. S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995). [CrossRef]
  25. Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998). [CrossRef]
  26. T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998). [CrossRef]
  27. M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998). [CrossRef]
  28. B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999). [CrossRef]
  29. H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999). [CrossRef]
  30. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000). [CrossRef]
  31. K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000). [CrossRef]
  32. K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001). [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  34. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  35. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  36. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996). [CrossRef]
  37. J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.
  38. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997). [CrossRef]
  39. To avoid any ambiguity, we note explicitly that "decreasing anomalous GVD" corresponds to a variation from anomalous toward normal dispersion values.
  40. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000). [CrossRef]
  41. G. A. Nowak, J. Kim, and M. N. Islam, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt. 38, 7364-7369 (1999). [CrossRef]
  42. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999). [CrossRef]
  43. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped ytterbium fiber source," Opt. Express 10, 382-387 (2002). [PubMed]
  44. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002). [CrossRef]
  45. H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004). [CrossRef]
  46. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005). [CrossRef] [PubMed]
  47. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005). [CrossRef] [PubMed]
  48. M. Rusu, A. B. Grudinin, and O. G. Okhotnikov, "Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped pulse amplification system," Opt. Express 13, 6390-6400 (2005). [CrossRef] [PubMed]
  49. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). [CrossRef] [PubMed]
  50. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). [CrossRef] [PubMed]
  51. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003). [CrossRef]
  52. N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001). [CrossRef]
  53. N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001). [CrossRef]
  54. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, "All-fiber octave-spanning supercontinuum," Opt. Lett. 28, 643-645 (2003). [CrossRef] [PubMed]
  55. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003). [CrossRef]
  56. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550nm and its use in supercontinuum generation," Opt. Express 12, 3025-3034 (2004). [CrossRef] [PubMed]
  57. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004). [CrossRef] [PubMed]
  58. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005). [CrossRef]
  59. J. W. Nicholson and M. F. Yan, "Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550nm," Opt. Express 12, 679-688 (2004). [CrossRef] [PubMed]
  60. B. R. Washburn, S. A. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004). [CrossRef] [PubMed]
  61. B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004). [CrossRef] [PubMed]
  62. B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622-10633 (2005). [CrossRef] [PubMed]
  63. W. C. McFerran, J. J. Swann, B. R. Washburn, and N. R. Newbury, "Elimination of pump-induced frequency jitter on fiber-laser frequency combs," Opt. Lett. 31, 1997-1999 (2006). [CrossRef] [PubMed]
  64. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004). [CrossRef]
  65. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003). [CrossRef]
  66. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003). [CrossRef] [PubMed]
  67. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003). [CrossRef] [PubMed]
  68. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  69. M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003). [CrossRef]
  70. M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003). [CrossRef]
  71. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004). [CrossRef] [PubMed]
  72. A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005). [CrossRef] [PubMed]
  73. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). [CrossRef] [PubMed]
  74. F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005). [CrossRef] [PubMed]
  75. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005). [CrossRef] [PubMed]
  76. P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous wave, high-power, raman continuum light source," Opt. Express 12, 5287-5295 (2004). [CrossRef] [PubMed]
  77. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997). [CrossRef] [PubMed]
  78. M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005). [CrossRef]
  79. J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave super continuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2601 (2005). [CrossRef] [PubMed]
  80. J. H. Lee and K. Kikuchi, "Experimental performance characterization for various continuous-wave supercontinuum schemes: ring cavity and single pass structures," Opt. Express 13, 4848-4853 (2005). [CrossRef] [PubMed]
  81. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  82. J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002). [CrossRef]
  83. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002). [PubMed]
  84. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  85. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  86. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003). [CrossRef] [PubMed]
  87. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986). [CrossRef] [PubMed]
  88. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)]. [CrossRef]
  89. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  90. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  91. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30fs pulses," Opt. Express 12, 4614-4624 (2004). [CrossRef] [PubMed]
  92. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].
  93. J. H. Lee, Y.-G. Han, and S. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006). [CrossRef] [PubMed]
  94. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). [CrossRef] [PubMed]
  95. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  96. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). [CrossRef]
  97. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991). [CrossRef]
  98. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003). [CrossRef]
  99. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002). [CrossRef]
  100. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Phys. Lett. 11, 2489-2494 (1972).
  101. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002). [CrossRef]
  102. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003). [CrossRef]
  103. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). [CrossRef] [PubMed]
  104. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006). [CrossRef] [PubMed]
  105. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003). [CrossRef] [PubMed]
  106. F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004). [CrossRef]
  107. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  108. M. Monerie, "Propagation in doubly-clad single mode fiers," IEEE J. Quantum Electron. 18, 535-542 (1983). [CrossRef]
  109. P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993). [CrossRef] [PubMed]
  110. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004). [CrossRef]
  111. H. H. Kuehl, "Solitons on an axially nonuniform optical fiber," J. Opt. Soc. Am. B 5, 709-713 (1988). [CrossRef]
  112. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett. 18, 476-478 (1993). [CrossRef] [PubMed]
  113. M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997). [CrossRef]
  114. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004). [CrossRef] [PubMed]
  115. E. B. Treacy, "Measurement and interpretation of dynamic spectrograms of picosecond light pulses," J. Appl. Phys. 42, 3848-3858 (1971). [CrossRef]
  116. G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003). [CrossRef] [PubMed]
  117. J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004). [CrossRef] [PubMed]
  118. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004). [CrossRef] [PubMed]
  119. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). [CrossRef] [PubMed]
  120. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J., H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). [CrossRef] [PubMed]
  121. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. T. F., and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006). [CrossRef] [PubMed]
  122. S. V. Chernikov, J. R. Taylor, and R. Kashyap, "Comb-like dispersion profiled fiber for soliton pulse train generation," Opt. Lett. 19, 539-541 (1994). [CrossRef] [PubMed]
  123. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006). [CrossRef]
  124. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited