OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1857–1861

Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser

Sidney S. Yang, Yun-Ching Chang, Pei-Chun Yen, and Ya-Chang Chou  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1857-1861 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the coupled-wave theory, we model the periodic structure and analyze the influence on composite surface-emitting organic distributed feedback (DFB) lasers. Second-order DFB gratings with duty cycles of 0.3, 0.5, and 0.7 patterned by electron-beam lithography were fabricated. The composite active layer consisted of 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) and poly(N-vinylcarbazole) (PVK) spin-cast on a textured surface. Excited with 532 nm laser pulses, different lasing characteristics and threshold pumping fluences are exhibited. These are explained by the discrepancy in the coupling coefficients and the threshold gains calculated from the proposed model.

© 2007 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(160.4890) Materials : Organic materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 19, 2007
Revised Manuscript: April 26, 2007
Manuscript Accepted: April 29, 2007
Published: July 19, 2007

Sidney S. Yang, Yun-Ching Chang, Pei-Chun Yen, and Ya-Chang Chou, "Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser," J. Opt. Soc. Am. B 24, 1857-1861 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature (London) 382, 695-697 (1996). [CrossRef]
  2. V. G. Kozolov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature (London) 389, 362-364 (1997). [CrossRef]
  3. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A flexible conjugated polymer laser," Adv. Mater. (Weinheim, Ger.) 10, 920-923 (1998). [CrossRef]
  4. A. Dodabalapur, M. Berggren, R. E. Slusher, Z. Bao, A. Timko, P. Schiortino, E. Laskowski, H. E. Katz, and O. Nalamasu, "Resonators and materialsfor organic lasers based on energy transfer," IEEE J. Sel. Top. Quantum Electron. 4, 67-74 (1998). [CrossRef]
  5. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003). [CrossRef]
  6. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, "Influence of grating characteristics on the operation of circlar-grating distributed-feedback polymer lasers," J. Appl. Phys. 98, 0231051-7 (2005). [CrossRef]
  7. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972). [CrossRef]
  8. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973). [CrossRef]
  9. H. Kogelnik and C. V. Shank, "Stimulated emission in a periodic structure," J. Appl. Phys. 18, 152-154 (1971).
  10. S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer, "Laser modes in organic solid-state distributed feedback lasers," Appl. Phys. B B 71, 897-900 (2000). [CrossRef]
  11. W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupling coefficients for distributed feedback single- and double-hetrostructure diode lasers," IEEE J. Quantum Electron. QE-11, 867-873 (1975). [CrossRef]
  12. R. D. Burnham, D. R. Scifres, and W. Streifer, "Single-heterostrucutre distributed-feedback GaAs-diode lasers," IEEE J. Quantum Electron. QE-11, 439-449 (1975). [CrossRef]
  13. C. H. Chen, J. Shi, and K. P. Klubek, "Red organic electroluminescent materials," US patent 5908521 (1999).
  14. W. Lu, B. Zhong, and D. Ma, "Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers," Opt. Lett. 26, 5074-5078 (2004).
  15. K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystal," Appl. Phys. Lett. 18, 475-477 (1971). [CrossRef]
  16. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, "Amplified spontaneous emission from photopumped films of a conjugated polymer," Phys. Rev. B 58, 7035-7039 (1998). [CrossRef]
  17. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241161-3 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited