OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1874–1885

Optimizing two-photon absorption for volumetric optical data storage

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1874-1885 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the requirements imposed on organic photochromes for two-photon absorption (2PA) terabyte volumetric optical storage. We present a quantitative model of signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) when 2PA-induced photochromic switching is used for writing, and 2PA-induced fluorescence is used for readout. We show that single-channel data access rate > 100 MHz at minimum SNR > 4 implies minimum intrinsic 2PA cross section, σ 2 > 10 3 GM . Resonance enhancement allows σ 2 10 5 GM , however, it also lowers SBR due to thermally-activated one-photon absorption. We model the critical trade-off between SNR and SBR as a function of laser frequency, intensity, and temperature. Acceptable parameter space may be achieved by careful choice of the above variables. We perform experiments with nonsymmetrical free-base phthalocyanines, which show efficient 2PA-induced photochromic switching between two tautomer forms and large σ 2 10 4 GM , and show good potential for high-capacity data storage.

© 2007 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(210.2860) Optical data storage : Holographic and volume memories
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Nonlinear Optics

Original Manuscript: October 27, 2006
Revised Manuscript: February 16, 2007
Manuscript Accepted: February 20, 2007
Published: July 19, 2007

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, "Optimizing two-photon absorption for volumetric optical data storage," J. Opt. Soc. Am. B 24, 1874-1885 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989). [CrossRef] [PubMed]
  2. J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993). [CrossRef]
  3. S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein. [CrossRef]
  4. G. W. Burr, "Volumetric storage," in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Dekker, 2003), and references therein.
  5. A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999). [CrossRef]
  6. M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001). [CrossRef]
  7. A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001). [CrossRef]
  8. P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001). [CrossRef]
  9. B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002). [CrossRef]
  10. D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002). [CrossRef]
  11. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004). [CrossRef] [PubMed]
  12. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005). [CrossRef]
  13. M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005). [CrossRef]
  14. O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006). [CrossRef]
  15. M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006). [CrossRef] [PubMed]
  16. M. Irie, guest ed., "Photochromism: memories and switches," Chem. Rev. (Washington, D.C.) 100(5), Special Issue (2000).
  17. V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973). [CrossRef]
  18. A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).
  19. S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005). [CrossRef] [PubMed]
  20. Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006). [CrossRef]
  21. C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).
  22. M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002). [CrossRef]
  23. A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004). [CrossRef]
  24. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006). [CrossRef] [PubMed]
  25. S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980). [CrossRef]
  26. S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980). [CrossRef]
  27. E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985). [CrossRef]
  28. I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997). [CrossRef]
  29. M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000). [CrossRef]
  30. M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003). [CrossRef]
  31. A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004). [CrossRef]
  32. D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990). [CrossRef]
  33. A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994). [CrossRef]
  34. A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996). [CrossRef]
  35. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.
  36. A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997). [CrossRef]
  37. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999). [CrossRef]
  38. D. Day, M. Gu, and A. Smallridge, "Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer," Opt. Lett. 24, 948-950 (1999). [CrossRef]
  39. H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999). [CrossRef]
  40. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000). [CrossRef]
  41. Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A Vaia, and B. A. Reinhardt, "High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy," Appl. Opt. 40, 938-940 (2001). [CrossRef]
  42. K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002). [CrossRef]
  43. B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005). [CrossRef]
  44. W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005). [CrossRef]
  45. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001). [CrossRef]
  46. Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001). [CrossRef]
  47. K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993). [CrossRef] [PubMed]
  48. A. Karotki, "Simultaneous two-photon absorption of tetrapyrrolic molecules: from femtosecond coherence experiments to photodynamic therapy," Ph.D. dissertation (Montana State University, 2003).
  49. M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002). [CrossRef]
  50. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003). [CrossRef]
  51. J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004). [CrossRef] [PubMed]
  52. M. G. Kuzyk, "Doubly resonant two-photon absorption cross-sections: it does not get any bigger than this," J. Nonlinear Opt. Phys. Mater. 13, 461-466 (2004). [CrossRef]
  53. K. K. Rebane, Impurity Spectra of Solids (Plenum, 1970).
  54. A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).
  55. D. W. Posener, "The shape of spectral lines: Tables of the Voigt profile," Aust. J. Phys. 12, 184-196 (1959). [CrossRef]
  56. I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997). [CrossRef]
  57. J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000). [CrossRef]
  58. E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003). [CrossRef]
  59. A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005). [CrossRef]
  60. M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).
  61. M. Gouterman, "Spectra of porphyrins," J. Mol. Spectrosc. 6, 138-163 (1961). [CrossRef]
  62. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003). [CrossRef]
  63. M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006). [CrossRef] [PubMed]
  64. M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited