OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1886–1900

Femtosecond pulse shaping in the mid-infrared generated by difference-frequency mixing: a simulation and experiment

Masaaki Tsubouchi and Takamasa Momose  »View Author Affiliations


JOSA B, Vol. 24, Issue 8, pp. 1886-1900 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001886


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have examined phase- and amplitude-modulated femtosecond laser pulses in the mid-infrared (MIR) region ( 3 10 μ m ) generated by difference-frequency mixing both theoretically and experimentally. Transfer of the pulse shape from near infrared to MIR by a difference-frequency process was evaluated in detail for various spectra, linear chirps, phases, and optical delays of two pulses before the different frequency was compared and with experimentally obtained MIR shapes. In the experiment, the signal pulse of an optical parametric amplifier was shaped with an acousto-optic programmable dispersive filter and mixed in an AgGaS 2 crystal with the idler pulse that was temporally stretched by passing it through a dispersion block to generate a shaped MIR pulse. The agreement between the theory and experiment was reasonable despite the complicated experimental procedure. It was demonstrated that the resultant MIR pulse shape could be completely different from the pulse shape before the difference-frequency generation. However, it is possible to reproduce any shape of MIR pulses by predicting the pulse shape using the present theoretical framework. This will allow us to manipulate rovibrational wave packets of real molecules for practical applications.

© 2007 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.1040) Optical devices : Acousto-optical devices
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 27, 2006
Revised Manuscript: March 8, 2007
Manuscript Accepted: April 27, 2007
Published: July 19, 2007

Citation
Masaaki Tsubouchi and Takamasa Momose, "Femtosecond pulse shaping in the mid-infrared generated by difference-frequency mixing: a simulation and experiment," J. Opt. Soc. Am. B 24, 1886-1900 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989). [CrossRef]
  2. S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990). [CrossRef] [PubMed]
  3. D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997). [CrossRef]
  4. D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998). [CrossRef]
  5. D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999). [CrossRef]
  6. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998). [CrossRef]
  7. T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004). [CrossRef]
  8. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004). [CrossRef] [PubMed]
  9. L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002). [CrossRef]
  10. L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003). [CrossRef]
  11. T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003). [CrossRef]
  12. C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006). [CrossRef]
  13. C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001). [CrossRef]
  14. C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002). [CrossRef] [PubMed]
  15. U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003). [CrossRef]
  16. C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004). [CrossRef] [PubMed]
  17. U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005). [CrossRef] [PubMed]
  18. B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005). [CrossRef]
  19. M. Tsubouchi and T. Momose, "Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulse toward quantum computing" (submitted to Phys. Rev. A).
  20. D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002). [CrossRef]
  21. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort wave-form generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995). [CrossRef]
  22. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997). [CrossRef]
  23. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, "Arbitrary dispersion control of ultrashort optical pulses with acoustic waves," J. Opt. Soc. Am. B 17, 138-145 (2000). [CrossRef]
  24. D. Kaplan and P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV 12, 69-75 (2002).
  25. A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998). [CrossRef]
  26. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000), and references there in. [CrossRef]
  27. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000). [CrossRef]
  28. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002). [CrossRef]
  29. T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003). [CrossRef]
  30. H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003). [CrossRef] [PubMed]
  31. N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005). [CrossRef] [PubMed]
  32. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000). [CrossRef]
  33. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006). [CrossRef] [PubMed]
  34. S. H. Shim, D. B. Strasfeld, and M. T. Zanni, "Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses," Opt. Express 14, 13120-13130 (2006). [CrossRef] [PubMed]
  35. A. M. Weiner, "Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via 2nd harmonic-generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983). [CrossRef]
  36. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984). [CrossRef]
  37. K. Kato, "Second-harmonic generation to 2048Å in β-BaB2O4," IEEE J. Quantum Electron. QE-22, 1013-1014 (1986). [CrossRef]
  38. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).
  39. D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, "Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components," J. Opt. Soc. Am. B 20, 2226-2237 (2003). [CrossRef]
  40. X. Liu, A. P. Shreenath, M. Kimmel, R. Trebino, A. V. Smith, and S. Link, "Numerical simulations of optical parametric amplification cross-correlation frequency-resolved optical gating," J. Opt. Soc. Am. B 23, 318-325 (2006). [CrossRef]
  41. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000). [CrossRef]
  42. C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000). [CrossRef]
  43. W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004). [CrossRef]
  44. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991). [CrossRef]
  45. N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992). [CrossRef]
  46. V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998). [CrossRef]
  47. K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003). [CrossRef] [PubMed]
  48. M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005). [CrossRef] [PubMed]
  49. K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006). [CrossRef] [PubMed]
  50. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited