OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1901–1908

Aberrationless theory of self-focusing via spatial and angular variances for modal laser fields

Sylvain Rivet and Lionel Canioni  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1901-1908 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new, to the best of our knowledge, formalism based on the propagation of variances in an ABCD optical system to study nonlinear effect in a Kerr medium. This theory, developed for the first order in the beam power, is applied to modal laser fields (Gaussian, Hermite–Gaussian, and Laguerre–Gaussian beams) and permits one to obtain a simple analytical formulation for self-focusing and Z-scan experiments, whatever the thickness of the nonlinear medium.

© 2007 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(350.5500) Other areas of optics : Propagation

ToC Category:
Nonlinear Optics

Original Manuscript: September 27, 2006
Revised Manuscript: February 21, 2007
Manuscript Accepted: March 30, 2007
Published: July 19, 2007

Sylvain Rivet and Lionel Canioni, "Aberrationless theory of self-focusing via spatial and angular variances for modal laser fields," J. Opt. Soc. Am. B 24, 1901-1908 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, "Modes, beams, coherence and orthogonality," Proc. SPIE 2870, 250-259 (1996). [CrossRef]
  2. J. Primot, "Three-wave lateral shearing interferometer," Appl. Opt. 32, 6242-6249 (1995). [CrossRef]
  3. K. Buse and M. Luennemann, "3D imaging: wave front sensing utilizing a birefringent crystal," Phys. Rev. Lett. 85, 3385-3387 (2000). [CrossRef] [PubMed]
  4. W.Mecklenbräuker and F.Hlawatsch, eds., The Wigner Distribution: Theory and Application in Signal Processing (Elsevier, 1997).
  5. D. Dragoman, "The Wigner distribution function in optics and optoelectronics," Progress in Optics XXXVII, E.Wolf, ed. (Elseiver Science, 1997) pp. 3-53.
  6. A.E.Siegman, ed. Lasers (University Science, 1986).
  7. F. Gori and M. Santarsiero, "The change of width for a partially coherent beam on paraxial propagation," Opt. Commun. 82, 197-203 (1991). [CrossRef]
  8. S. Lavi, R. Prochaska, and E. Keren, "Generalized beam parameters and transformation laws for partially coherent light," Appl. Opt. 27, 3696-3703 (1988). [CrossRef] [PubMed]
  9. M. J. Bastiaans, "Second-order moments of the Wigner distribution function in first-order optical systems," Optik (Stuttgart) 88, 163-168 (1991).
  10. M. J. Bastiaans, "ABCD law for partially coherent Gaussian light, propagation through first-order optical systems," Opt. Quantum Electron. 24, 1011-1019 (1992). [CrossRef]
  11. M. J. Bastiaans, "Wigner distribution function applied to twisted Gaussian light propagation in first-order optical systems," J. Opt. Soc. Am. A 17, 2475-2480 (2000). [CrossRef]
  12. M. J. Bastiaans, "The Wigner distribution function and its application to first order optics," J. Opt. Soc. Am. 69, 1710-1716 (1979). [CrossRef]
  13. M. J. Bastiaans, "Application of the Wigner distribution function in optics," http://www.sps.ele.tue.nl/members/M.J.Bastiaans/abstracts/wigner.html.
  14. D. Dragoman, "Wigner distribution function for Gaussian-schell beams in complex matrix optical systems," Appl. Opt. 34, 3352-3357 (1995). [CrossRef] [PubMed]
  15. F. Salin, J. Squier, and M. Piché, "Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation," Opt. Lett. 16, 1674-1676 (1991). [CrossRef] [PubMed]
  16. R. Martinez-Herrero and P. M. Mejias, "Beam characterization through active media," Opt. Commun. 85, 162-166 (1991). [CrossRef]
  17. D. Dragoman, "Wigner distribution function in nonlinear optics," Appl. Opt. 35, 4142-4146 (1996). [CrossRef] [PubMed]
  18. M. A. Porras, J. Alda, and E. Bernabeu, "Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism," Appl. Opt. 32, 5885-5892 (1993). [CrossRef] [PubMed]
  19. C. Paré and P. A. Bélanger, "Beam propagation in a linear of nonlinear lens-like medium using ABCD ray matrices: the method of moments," Opt. Quantum Electron. 24, 1051-1070 (1992). [CrossRef]
  20. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, "Self-focusing-induced saturable loss for laser mode locking," Opt. Lett. 17, 511-513 (1992). [CrossRef] [PubMed]
  21. V. Magni, G. Cerullo, and S. DeSilvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993). [CrossRef]
  22. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  23. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, "High-sensitivity single-beam n2 measurement," Opt. Lett. 14, 955-957 (1989). [CrossRef] [PubMed]
  24. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. (Bellingham) 30, 1228-1235 (1991). [CrossRef]
  25. J. A. Hermann and R. G. McDuff, "Analysis of spatial scanning with thick optically nonlinear media," J. Opt. Soc. Am. B 10, 2056-2064 (1993). [CrossRef]
  26. J. G. Tian, W. P. Zang, C. Z. Zhang, and G. Zhang, "Analysis of beam propagation in thick nonlinear media," Appl. Opt. 34, 4331-4336 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited