OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1909–1915

Generation of tunable blue–green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity

Li-Min Lee, Shan-Chuang Pei, Der-Fong Lin, Po-Chun Chiu, Mon-Chang Tsai, Ta-Min Tai, De-Hao Sun, A. H. Kung, and Sheng-Lung Huang  »View Author Affiliations


JOSA B, Vol. 24, Issue 8, pp. 1909-1915 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001909


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a novel self-cascaded first-order second-harmonic generation (SHG) and third-order sum-frequency generation (SFG) in a ZnO periodically poled lithium niobate crystal fiber, tunable blue–green light was demonstrated. At a domain pitch of 15.45 μ m , the SHG signal and its fundamental signal at 1423.9 nm can satisfy the third-order SFG quasi-phase-matched (QPM) condition. The measured SHG power at 714.2 nm was 12.25 mW under 100 mW input power, and the estimated nonlinear coefficient ( d 33 ) achieved was 25.3 pm V . The self-cascaded SHG + SFG power measured at 477.1 nm was 700 μ W under 350 mW input power. The maximum internal efficiency of the SHG is 14.84%. The tuning range of the self-cascaded SHG and SFG generated tunable blue–green light was more than 40 nm , from 471.3 to 515 nm . The maximum simulated 3 dB bandwidth achieved using a gradient-period QPM structure is 196 nm , which is from 1476 to 1672 nm . The gain-bandwidth product of the self-cascaded SHG and SFG processes decreases drastically as the bandwidth is broadened.

© 2007 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(160.3730) Materials : Lithium niobate
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 8, 2007
Revised Manuscript: April 13, 2007
Manuscript Accepted: April 15, 2007
Published: July 19, 2007

Citation
Li-Min Lee, Shan-Chuang Pei, Der-Fong Lin, Po-Chun Chiu, Mon-Chang Tsai, Ta-Min Tai, De-Hao Sun, A. H. Kung, and Sheng-Lung Huang, "Generation of tunable blue-green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity," J. Opt. Soc. Am. B 24, 1909-1915 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969). [CrossRef]
  2. T. Y. Fan, G. J. Dixon, and R. L. Byer, "Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047μm with intracavity doubling to 523.6nm," Opt. Lett. 11, 204-206 (1986). [CrossRef] [PubMed]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  4. J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. P. Meyn, "Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal," Opt. Lett. 27, 604-606 (2002). [CrossRef]
  5. S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 58, 2096-2113 (1969). [CrossRef]
  6. R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron. QE-15, 432-444 (1979). [CrossRef]
  7. L. Myers, R. Eckardt, M. M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (2002). [CrossRef]
  8. K. Kato, "Second-harmonic and sum-frequency generation to 4950 and 4589Å in KTP," IEEE J. Quantum Electron. QE-24, 3-4 (1988). [CrossRef]
  9. P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, "Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure," Opt. Lett. 29, 95-97 (2004). [CrossRef] [PubMed]
  10. C. K. Lee, J. Y. Zhang, J. Y. J. Huang, and C. L. Pan, "Theoretical and experimental studies of tunable ultraviolet-blue femtosecond pulses in a 405-nm pumped type I β-BaB2O4 noncollinear optical parametric amplifier and cascading sum-frequency generation," J. Opt. Soc. Am. B 21, 1494-1499 (2004). [CrossRef]
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  12. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3," Opt. Lett. 20, 52-54 (1995). [CrossRef] [PubMed]
  13. X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002). [CrossRef]
  14. M. Taya, M. C. Bashaw, and M. M. Fejer, "Photorefractive effects in periodically poled ferroelectrics," Opt. Lett. 21, 857-859 (1996). [CrossRef] [PubMed]
  15. D. H. Jundt, "Lithium niobate single crystal fiber growth and quasi-phase matching," Ph.D. dissertation (Stanford University, 1991).
  16. L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005). [CrossRef]
  17. L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, "Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal," Opt. Lett. 23, 1508-1510 (1998). [CrossRef]
  18. Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001). [CrossRef]
  19. D. H. Jundt, "Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997). [CrossRef]
  20. C. S. Yu and A. H. Kung, "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator," J. Opt. Soc. Am. B 16, 2233-2238 (1999). [CrossRef]
  21. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 285-293.
  22. P. S. Banks, M. D. Feit, and M. D. Perry, "High-intensity third-harmonic generation," J. Opt. Soc. Am. B 19, 102-118 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited