OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2244–2248

Superluminal solitons in a Λ-type atomic system with two-folded levels

Dingan Han, Yaguang Zeng, Weicheng Chen, Hong Lu, and Chunqing Huang  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2244-2248 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With one weak pulsed probe field, one strong pumping field, and one coupling field, superluminal optical solitons are formed in a lifetime-broadened Λ-type atomic medium with two-folded levels. The corresponding group velocity of the solitons can be larger than the vacuum light speed c; i.e., superluminal solitons can be presented.

© 2007 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: August 11, 2006
Revised Manuscript: May 23, 2007
Manuscript Accepted: May 25, 2007
Published: August 20, 2007

Dingan Han, Yaguang Zeng, Weicheng Chen, Hong Lu, and Chunqing Huang, "Superluminal solitons in a Λ-type atomic system with two-folded levels," J. Opt. Soc. Am. B 24, 2244-2248 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark,L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley,K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. Phillips, "Generating solitons by phase engineering of a Bose-Einstein condensate," Science 287, 97-101 (2000). [CrossRef]
  3. B. Wu, J. Liu, and Q. Niu, "Controlled generation of dark solitons with phase imprinting," Phys. Rev. Lett. 88, 034102 (2002). [CrossRef]
  4. H. A. Haus and W. S. Wong, "Solitons in optical communications," Rev. Mod. Phys. 68, 423-444 (1996), and references therein. [CrossRef]
  5. H. Kang and Y. Zhu, "Observation of large Kerr nonlinearity at low light intensities," Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  6. T. Hong, "Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide," Phys. Rev. Lett. 90, 183901 (2003). [CrossRef] [PubMed]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behrrozi, "Light speed reduction to 17 meterspersecond in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  8. Y. Wu and L. Deng, "Ultraslow optical solitons in a cold four-state medium," Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  9. Y. Wu and L. Deng, "Ultraslow bright and dark optical solitons in a cold three-state medium," Opt. Lett. 29, 2064-2066 (2004). [CrossRef] [PubMed]
  10. D. Han, Y. Zeng, Y. Bai, and C. Huang, "Superluminal optical solitons in a four-level tripod atomic system," J. Phys. B 39, 3029-3035 (2006). [CrossRef]
  11. D. Solli, R. Y. Chiao, and J. M. Hickmann, "Superluminal optical solitons in a four-level tripod atomic system," Phys. Rev. E 66, 056601 (2002). [CrossRef]
  12. R. Y. Chiao and A. M. Steinberg, Progress in Optics (Elsevier, 1997).
  13. L. J. Wang, A. Kuzmich, and P. Pogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  14. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003). [CrossRef]
  15. G. S. Agarwal, T. N. Dey, and S. Menon, "Knob for changing light propagation from subluminal to superluminal," Phys. Rev. A 64, 053809 (2001). [CrossRef]
  16. D. Han, H. Guo, Y. Bai, and H. Sun, "Subluminal and superluminal propagation of light in an N-type medium," Phys. Lett. A 334, 243-248 (2005). [CrossRef]
  17. D. Han, H. Guo, Y. BaiH. Sun, and Y. Zeng, "SGC switching between subluminal to superluminal propagation in V-type atom," Commun. Theor. Phys. 46, 731-734 (2006). [CrossRef]
  18. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, "Quantum interference effects induced by interacting dark resonances," Phys. Rev. A 60, 3225-3228 (1999). [CrossRef]
  19. C. Liu, S. Gong, D. Cheng, X. Fan, and Z. Xu, "Atom localization via interference of dark resonances," Phys. Rev. A 73, 025801 (2006). [CrossRef]
  20. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995). [CrossRef] [PubMed]
  21. R. Buffa, S. Cavalieri, and M. V. Tognetti, "Coherent control of temporal pulse shaping by electromagnetically induced transparency," Phys. Rev. A 69, 033815 (2004). [CrossRef]
  22. J.-H. Li, W.-X. Yang, Z.-M. Zhan, and J.-C. Peng, "Ultraslow bright and dark solitons using only a pulsed laser in a cold three-state medium," Chin. Phys. Lett. 22, 357-360 (2005). [CrossRef]
  23. Y.-C. Chen, Y.-A. Liao, H.-Y. Chiu, J.-J. Su, and I. A. Yu, "Observation of the quantum interference phenomenon induced by interacting dark resonances," Phys. Rev. A 64, 053806 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited