OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2273–2278

Mode structure and attenuation characteristics of hollow parabolic waveguides

Rodrigo J. Noriega-Manez and Julio C. Gutiérrez-Vega  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2273-2278 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mode structure and attenuation constants in parabolic hollow waveguides with arbitrary parabolic domains are investigated based on the exact vector field expressions and characteristic equations. Normalized attenuation charts are provided for a variety of mode numbers, parities, and polarizations. The analysis is not restricted to parabolic waveguides with a symmetric cross section.

© 2007 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: March 27, 2007
Manuscript Accepted: June 6, 2007
Published: August 20, 2007

Rodrigo J. Noriega-Manez and Julio C. Gutiérrez-Vega, "Mode structure and attenuation characteristics of hollow parabolic waveguides," J. Opt. Soc. Am. B 24, 2273-2278 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. G. F. Miner, Lines and Electromagnetic Fields for Engineers (Oxford U. Press, 1996).
  2. C. Someda, Electromagnetic Waves (Chapman & Hill, 1988).
  3. R. D. Spence and C. P. Wells, "The propagation of electromagnetic waves in parabolic pipes," Phys. Rev. 62, 58-62 (1942). [CrossRef]
  4. P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), Vol. II.
  5. C. S. Kenney and P. L. Overfelt, "A simple approach to mode analysis for parabolic waveguides," IEEE Trans. Microwave Theory Tech. 39, 405-412 (1991). [CrossRef]
  6. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Lett. 29, 44-46 (2004). [CrossRef] [PubMed]
  7. C. López-Mariscal, M. A. Bandres, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, "Observation of parabolic nondiffracting wave fields," Opt. Express 13, 2364-2369 (2005). [CrossRef] [PubMed]
  8. J. C. Gutiérrez-Vega and M. A. Bandres, "Helmholtz-Gauss waves," J. Opt. Soc. Am. A 22, 289-298 (2005). [CrossRef]
  9. M. A. Bandres and J. C. Gutiérrez-Vega, "Vector Helmholtz-Gauss and vector Laplace-Gauss beams," Opt. Lett. 30, 2155-2157 (2005). [CrossRef] [PubMed]
  10. C. López-Mariscal, M. A. Bandres, and J. C. Gutiérrez-Vega, "Observation of the experimental propagation properties of Helmholtz-Gauss beams," Opt. Eng. (Bellingham) 45, 068001 (2006). [CrossRef]
  11. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, "Generalized Helmholtz-Gauss beam and its transformation by paraxial optical systems," Opt. Lett. 31, 2912-2914 (2006). [CrossRef] [PubMed]
  12. R. I. Hernandez-Aranda, Julio C. Gutiérrez-Vega, M. Guizar-Sicairos, and M. A. Bandres, "Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems," Opt. Express 14, 8974-8988 (2006). [CrossRef] [PubMed]
  13. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  14. Julio C. Gutiérrez-Vega, R. M. Rodríguez-Dagnino, and S. Chávez-Cerda, "Attenuation characteristics in confocal annular elliptic waveguides and resonators," IEEE Trans. Microwave Theory Tech. 50, 1095-1100 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited