OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2333–2342

Guided plasmon polariton at 2D metal corners

Min Yan and Min Qiu  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2333-2342 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the properties of plasmon polaritons guided by 2D monoangular metal corners with a vector finite-element method. Such corner waveguides in general include both V-channel- and Λ-wedge-type waveguides. The influences of both geometric parameters (i.e., corner angle, tip sharpness, etc.) and operating wavelength to the mode properties, such as effective mode index, loss, and mode field size, are inspected. It is noticed that both a smaller corner angle and a sharper corner tip help to better confine the mode field. The confinement of the V-channel waveguide is found to be especially sensitive to its angle, while the confinement of the Λ-wedge waveguide is affected about equally by its angle and tip sharpness. Almost all superior mode field confinement is realized at the expense of higher propagation loss for such waveguides. The chromatic dispersion of such waveguides is found to be adequate for applications in integrated optical circuits. The mode behaviors of realistic corner waveguides with finite sidewalls are also studied.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: April 11, 2007
Manuscript Accepted: June 13, 2007
Published: August 23, 2007

Min Yan and Min Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B 24, 2333-2342 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  2. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  3. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  4. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  8. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  9. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  10. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  11. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004). [CrossRef]
  12. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006). [CrossRef] [PubMed]
  13. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  14. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  15. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  16. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). [CrossRef] [PubMed]
  17. A. Degiron and D. R. Smith, "Numerical simulations of long-range plasmons," Opt. Express 14, 1611-1625 (2006). [CrossRef] [PubMed]
  18. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006). [CrossRef] [PubMed]
  19. H. E. Hernández-Figueroa, F. A. Fernández, Y. Lu, and J. B. Davies, "Vectorial finite element modelling of 2D leaky waveguides," IEEE Trans. Magn. 31, 1710-1713 (1995). [CrossRef]
  20. M. Yan and M. Qiu, "Analysis of surface plasmon polariton using anisotropic finite elements," IEEE Photon. Technol. Lett. (to be published).
  21. Gmsh, http://www.geuz.org/gmsh/.
  22. J. Meixner, "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag. 20, 442-446 (1972). [CrossRef]
  23. C. J. Bouwkamp, "A note on singularities occurring at sharp edges in electromagnetic diffraction theory," Physica (The Hague) 12, 467-474 (1946). [CrossRef]
  24. J. Andersen and V. Solodukhov, "Field behavior near a dielectric wedge," IEEE Trans. Antennas Propag. 26, 598-602 (1978). [CrossRef]
  25. A. S. Sudbø, "Why are accurate computations of mode fields in rectangular dielectric waveguides difficult?" J. Lightwave Technol. 10, 418-419 (1992). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Part II, Subpart 1.
  27. P. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides--I: Summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975). [CrossRef]
  28. For example, the Corning SMF-28e+ optical fiber has dispersion ≤18 ps/nm/km at 1550 nm wavelength. http://www.corning.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited