OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1645–1654

Description of ultrashort pulse propagation in multimode optical fibers

Francesco Poletti and Peter Horak  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1645-1654 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The guided, single-mode propagation of ultrashort optical pulses is commonly described by a well studied and understood generalized nonlinear Schrödinger equation. Here we present and discuss an extended version for multimode optical fibers and waveguides including polarization effects, high-order dispersion, Kerr and Raman nonlinearities, self-steepening effects, as well as wavelength-dependent mode coupling and nonlinear coefficients. We then investigate the symmetry properties of the nonlinear coupling coefficients for the cases of step-index and circularly symmetric conventional fibers and for microstructured fibers with hexagonal symmetry. Finally, we study the computational complexity of the proposed algorithm.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

Original Manuscript: May 14, 2008
Manuscript Accepted: July 23, 2008
Published: September 18, 2008

Francesco Poletti and Peter Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Am. B 25, 1645-1654 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000). [CrossRef]
  3. P. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  5. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300-1320 (2008). [CrossRef]
  6. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297-1309 (2006). [CrossRef]
  7. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000). [CrossRef]
  8. J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291-298 (2003). [CrossRef]
  9. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910-918 (2003). [CrossRef]
  10. T. Delmonte, M. A. Watson, E. J. O'Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” in Conference on Lasers and Electro-Optics (2006), paper CTuA4.
  11. H.-G. Choi, C.-S. Kee, K.-H. Hong, J. Sung, S. Kim, D.-K. Ko, J. Lee, J.-E. Kim, and H. Y. Park, “Dispersion and birefringence of irregularly microstructured fiber with an elliptic core,” Appl. Opt. 46, 8493-8498 (2007). [CrossRef]
  12. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of subcycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382-5387 (2007). [CrossRef]
  15. A. Hasegawa, “Self-confinement of multimode optical pulse in a glass fiber,” Opt. Lett. 5, 416-417 (1980). [CrossRef]
  16. B. Crosignani and P. Di Porto, “Soliton propagation in multimode optical fibers,” Opt. Lett. 6, 329-330 (1981). [CrossRef]
  17. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I. Equal propagation amplitudes,” Opt. Lett. 12, 614-616 (1987). [CrossRef] [PubMed]
  18. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282-3285 (1997). [CrossRef]
  19. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation: from Maxwell's to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  20. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061-1082 (1992). [CrossRef]
  21. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866-868 (1995). [CrossRef]
  22. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197-2199 (2003). [CrossRef]
  23. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  24. E. R. Martins, D. H. Spadoti, M. A. Romero, and B.-H. V. Borges, “Theoretical analysis of supercontinuum generation in a highly birefringent D-spaced microstructured optical fiber,” Opt. Express 15, 14335-14347 (2007). [CrossRef]
  25. A. Tonello, S. Pitois, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, and C. De Angelis, “Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber,” Opt. Express 14, 397-404 (2005). [CrossRef]
  26. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  27. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukelskii, V. S. Shevandin, and Y. N. Kondratev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber,” Opt. Lett. 28, 1948-1950 (2003). [CrossRef]
  28. T. Chaipiboonwong, P. Horak, J. D. Mills, and W. S. Brocklesby, “Numerical study of nonlinear interactions in a multimode waveguide,” Opt. Express 15, 9040-9047 (2007). [CrossRef]
  29. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729-3736 (2007). [CrossRef]
  30. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16, 2147-2152 (2008). [CrossRef]
  31. P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in optical fibers,” Opt. Lett. 15, 1076-1078 (1990). [CrossRef]
  32. J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110-16123 (2007). [CrossRef]
  33. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  34. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276-278 (1973). [CrossRef]
  35. A. W. Snyder, “Asymptotic expressions for the eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech. 17, 1130-1138 (1969). [CrossRef]
  36. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2006).
  37. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).
  38. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007). [CrossRef]
  39. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035-5047 (2008). [CrossRef]
  40. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides--I: Summary of results,” IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975). [CrossRef]
  41. T. Kremp and W. Freude, “Fast split-step wavelet collocation method for WDM system parameter optimization,” J. Lightwave Technol. 23, 1491-1502 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited