OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C1–C14

Slow-light regime and critical coupling in highly multimode corrugated waveguides

H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac  »View Author Affiliations

JOSA B, Vol. 25, Issue 12, pp. C1-C14 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large and periodically corrugated optical waveguide structures are shown to possess specific modal regimes of slow-light propagation that are easily attainable. The very multimode nature of the coupling is studied by employing coupled-mode theory and the plane-wave expansion method. Given a large enough light cone, associated with a surrounding medium with low enough refractive index, we notably identify a critical slowdown regime with an interesting bandwidth-slowdown product. Essential features of these original systems are further explored: the nature of the coupled modes, the role of gain, symmetry effects, polarization, and relation with photonic-crystal systems. Practical systems are introduced using finite-difference time-domain methods, which provides first-order rules for the use of the above phenomena and their implementation in devices.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Slow Light in Coupled Resonators and Waveguides

Original Manuscript: April 21, 2008
Revised Manuscript: June 2, 2008
Manuscript Accepted: June 6, 2008
Published: July 30, 2008

H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, "Slow-light regime and critical coupling in highly multimode corrugated waveguides," J. Opt. Soc. Am. B 25, C1-C14 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tamir, Guided Wave Optoelectronics (Springer-Verlag, 1990). [CrossRef]
  2. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  3. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).
  4. A. Yariv, “Coupled mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  5. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-253 (1977). [CrossRef]
  6. E. Peral, A. Yariv, and L. Fellow, “Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering,” J. Lightwave Technol. 17, 942-947 (1999). [CrossRef]
  7. A. Yariv, Quantum Electronics (Wiley, 1989).
  8. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  9. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  10. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of Bloch wave propagation in photonic crystals,” J. Opt. Soc. Am. B 22, 1179-1190 (2005). [CrossRef]
  11. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  12. S. Olivier, H. Benisty, C. Weisbuch, C. J. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 11, 1490-1496 (2003). [CrossRef] [PubMed]
  13. S. Olivier, M. Rattier, H. Benisty, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, R. Houdré, and C. Weisbuch, “Mini stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001). [CrossRef]
  14. L. Martinelli, H. Benisty, O. Khayam, G. H. Duan, H. Heidrich, and K. Janiak, “Analysis and optimization of compact demultiplexer monitor based on photonic crystal waveguide,” J. Lightwave Technol. 25, 2385-2394 (2007). [CrossRef]
  15. J.-M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005).
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  17. P. Ferrand, R. Romestain, and J. C. Vial, “Photonic band-gap properties of a porous silicon periodic planar waveguide,” Phys. Rev. B 63, 115106 (2001). [CrossRef]
  18. S. Albaledejo, J. J. Saenz, M. Lester, L. S. Froufe-Pérez, and A. Garcia-Martin, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007). [CrossRef]
  19. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484-491 (2004). [CrossRef]
  20. Y. A. Vlasov, M. O'Boyle, H. F. Hamman, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  21. S. Combrié, E. Weidner, A. De Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express 14, 7353-7361 (2006). [CrossRef] [PubMed]
  22. H. Gersen, T. J. Karle, J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Huslt, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  23. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  24. H. Benisty, A. David, L. Martinelli, E. Viasnoff-Schwoob, C. Weisbuch, G.-H. Duan, K. Janiak, and H. Heidrich, “From modal control to spontaneous emission and gain in photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 4, 1-11 (2006). [CrossRef]
  25. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, C. Cuisin, E. Derouin, O. Drisse, G.-H. Duan, L. Legouézigou, O. Legouézigou, F. Pommereau, S. Golka, H. Heidrich, H. J. Hensel, and K. Janiak, “Compact wavelength monitoring by lateral outcoupling in wedged photonic crystal multimode waveguides,” Appl. Phys. Lett. 86, 101107 (2005). [CrossRef]
  26. O. Khayam, C. Cambournac, H. Benisty, M. Ayre, H. Brenot, and G. H. Duan, “In-plane Littrow lasing of broad photonic crystal waveguides,” Appl. Phys. Lett. 91, 041111 (2007). [CrossRef]
  27. A. B. Greenwell, S. Booruang, and M. G. Moharam, “Multiple wavelength resonant grating at oblique incidence with broad angular acceptance,” Opt. Express 15, 8626-8638 (2007). [CrossRef] [PubMed]
  28. A. A. Sukhorukov, C. J. Handmer, C. Martijn de Sterke, and M. J. Steel, “Slow light with flat or offset band edges in few-mode fiber with two gratings,” Opt. Express 15, 17954-17959 (2007). [CrossRef] [PubMed]
  29. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett. 22, 46-47 (1973). [CrossRef]
  30. M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006). [CrossRef]
  31. U. Peschel, T. Pertsch, and F. Lederer, “Optical Bloch oscillations in waveguide arrays,” Opt. Lett. 23, 1701-1703 (1998). [CrossRef]
  32. I. Vorobeichikh, E. Narevicius, G. Rosenblum, M. Orenstein, and N. Moiseyev, “Electromagnetic realization of orders-of-magnitude tunneling enhancement in a double well system,” Phys. Rev. Lett. 90, 176806 (2003). [CrossRef]
  33. T. Pertsch, U. Peschel, and F. Lederer, “All-optical switching in quadratically nonlinear waveguide arrays,” Opt. Lett. 28, 102-104 (2003). [CrossRef] [PubMed]
  34. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement at a photonic wire miniband edge,” Opt. Lett. 26, 2113-2115 (2005). [CrossRef]
  35. We believe that the extent of slowdown in (k,ω) space is akin to the issue of the natural radius of Fabry-Perot modes (rFP~λ×thickness×finesse), which is itself tightly related to Fresnel zones (r~λ×distance), that is, to the generic quadratic transverse behavior of transverse phase lags off an unfolded reference path). We may, along the same line, conjecture that thickness tolerances would be similar to those of high-finesse Fabry-Perot resonators, demanding thickness variations of less than δW=λ/2/finesse but with a precise finesse definition depending on the frequency span and thus on the number of oscillations being exploited.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited