OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 261–268

Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

T. Baehr-Jones, M. Hochberg, Richard Soref, and A. Scherer  »View Author Affiliations

JOSA B, Vol. 25, Issue 2, pp. 261-268 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the design of a silicon-based source for radiation in the 0.5 14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation.

© 2008 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.6040) Detectors : Silicon
(060.4080) Fiber optics and optical communications : Modulation
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
THz Domain

Original Manuscript: July 30, 2007
Revised Manuscript: December 13, 2007
Manuscript Accepted: December 28, 2007
Published: January 30, 2008

T. Baehr-Jones, M. Hochberg, Richard Soref, and A. Scherer, "Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides," J. Opt. Soc. Am. B 25, 261-268 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. E. Mueller, "Terahertz radiation sources for imaging and sensing applications," Photonics Spectra 40, 60 (2006).
  2. M. Hoheisel, "Review of medical imaging with emphasis on X-ray detectors," Nucl. Instrum. Methods Phys. Res. A 563, 215-224 (2006). [CrossRef]
  3. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005). [CrossRef]
  4. A. V. Quema, M. Goto, M. Sakai, R. E. Oenzerfi, H. Takahashi, H. Murakami, S. Ono, N. Sarukura, and G. Janairo, "Onset detection of solid-state phase transition in estrogen-like chemical via terahertz transmission spectroscopy," Appl. Phys. Lett. 85, 3914-3916 (2004). [CrossRef]
  5. K. J. Linden, W. R. Neal, J. Waldman, A. J. Gatesman, and A. Danylov, "Terahertz laser based standoff imaging system," in 34th Applied Imagery Pattern Recognition Workshop (Applied Imagery Pattern Recognition, 2005), pp. 7-14. [CrossRef]
  6. Bruker Optics, http://www.brukeroptics.com.
  7. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002). [CrossRef]
  8. V. Kukushkin, "Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures," J. Opt. Soc. Am. B 23, 2528-2534 (2006). [CrossRef]
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  10. Virginia Diodes, Inc., http://virginiadiodes. com/.
  11. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nat. Photonics 1, 288-292 (2007). [CrossRef]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  13. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). [CrossRef]
  14. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004). [CrossRef]
  15. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007). [CrossRef]
  16. L. R. Dalton, Chemistry Department, University of Washington, Box 351700, Seattle, Wash, 98195 (personal communication, 2006).
  17. A. Yariv, Quantum Electronics (Wiley, 1989).
  18. T. Baehr-Jones, M. Hochberg, G. X. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  20. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," J. Lightwave Technol. 23, 4215-4221 (2005). [CrossRef]
  21. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006). [CrossRef] [PubMed]
  23. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]
  24. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  25. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004). [CrossRef]
  26. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photonics Technol. Lett. 17, 735-737 (2005). [CrossRef]
  27. Calmar Optcom, http://www.calmaropt.com.
  28. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. D. Luo, A. K. Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightwave Technol. 24, 3514-3519 (2006). [CrossRef]
  29. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  30. A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).
  31. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005). [CrossRef]
  32. T. Baehr-Jones, M. Hochberg, and A. Scherer are preparing a manuscript to be called "Photodetection in silicon beyond the band edge with surface states."
  33. B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007). [CrossRef]
  34. S. F. Preble, Q. Xu, B. Schmidt, and M. Lipson, "Ultra-fast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005). [CrossRef] [PubMed]
  35. H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006). [CrossRef] [PubMed]
  36. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  37. M. Borselli, "High-Q microresonators as lasing elements for silicon photonics," Ph.D. thesis (California Institute of Technology, 2006).
  38. R. Soref and B. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited