OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 651–658

Plasmon spectra of nanospheres under a tightly focused beam

Nassiredin M. Mojarad, Vahid Sandoghdar, and Mario Agio  »View Author Affiliations

JOSA B, Vol. 25, Issue 4, pp. 651-658 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the modification of the far-field cross sections and the near-field enhancement for gold and silver nanospheres illuminated by a tightly focused beam. Using a multipole-expansion approach we obtain an analytical solution to the scattering problem and provide insight on the effects of focusing on the optical response. Large differences with respect to Mie theory are especially found when the nanoparticle supports quadrupole or higher-order resonances.

© 2008 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: November 2, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: February 7, 2008
Published: March 31, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Nassiredin M. Mojarad, Vahid Sandoghdar, and Mario Agio, "Plasmon spectra of nanospheres under a tightly focused beam," J. Opt. Soc. Am. B 25, 651-658 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  3. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  5. P. Anger, P. Bharadway, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  6. C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron-electron interactions in metal nanoparticles,” Phys. Rev. Lett. 85, 2200-2203 (2000). [CrossRef] [PubMed]
  7. A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M. P. Pileni, and M. Treguer, “Electron-phonon scattering in metal clusters,” Phys. Rev. Lett. 90, 177401 (2003). [CrossRef] [PubMed]
  8. P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31, 2474-2476 (2006). [CrossRef] [PubMed]
  9. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97, 996-1001 (2000). [CrossRef] [PubMed]
  10. W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63-R73 (2003). [CrossRef] [PubMed]
  11. J. Seelig, K. Leslie, A. Renn, S. Kühn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685-689 (2007). [CrossRef] [PubMed]
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticles plasmon waveguides,” Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  13. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007). [CrossRef]
  14. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000). [CrossRef]
  15. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485-491 (2003). [CrossRef]
  16. K. Linfords, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticle using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004). [CrossRef]
  17. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004). [CrossRef]
  18. M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87-92 (1999). [CrossRef]
  19. J. R. Arias-González and M. Nieto-Vesperinas, “Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation,” J. Opt. Soc. Am. A 18, 657-665 (2001). [CrossRef]
  20. G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nanoparticles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93, 195-206 (2005). [CrossRef]
  21. M. M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nanoparticles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93, 207-217 (2005). [CrossRef]
  22. F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31, 1902-1904 (2006). [CrossRef] [PubMed]
  23. P. Török, P. D. Higdon, R. Juskaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335-341 (1998). [CrossRef]
  24. W. A. Challener, I. K. Sendur, and C. Peng, “Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials,” Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  25. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377-452 (1908). [CrossRef]
  26. N. Morita, T. Tanaka, T. Yamasaki, and Y. Nakanishi, “Scattering of a beam wave by a spherical object,” IEEE Trans. Antennas Propag. AP-16, 724-727 (1968). [CrossRef]
  27. W.-C. Tsai and R. J. Pogorzelski, “Eigenfunction solution of the scattering of beam radiation fields by spherical objects,” J. Opt. Soc. Am. 65, 1457-1463 (1975). [CrossRef]
  28. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632-1639 (1988). [CrossRef]
  29. W. G. Tam and R. Corriveau, “Scattering of electromagnetic beams by spherical objects,” J. Opt. Soc. Am. 68, 763-767 (1978). [CrossRef]
  30. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  31. J. A. Lock, J. T. Hodges, and G. Gouesbet, “Failure of the optical theorem for Gaussian-beam scattering by a spherical particle,” J. Opt. Soc. Am. A 12, 2708-2715 (1995). [CrossRef]
  32. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641-1650 (1999). [CrossRef]
  33. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  34. C. J. R. Sheppard and P. Török, “Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion,” J. Mod. Opt. 44, 803-818 (1997). [CrossRef]
  35. G. Gouesbet and G. Grehan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97-103 (1982). [CrossRef]
  36. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  37. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649-657 (1981). [CrossRef]
  38. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-825 (1985). [CrossRef]
  39. Wolfram Research, Inc., MATHEMATICA, Version 5.1, Champaign, Ill. (2004).
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  41. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000). [CrossRef]
  42. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  43. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379-3381 (2000). [CrossRef]
  44. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150-2154 (2006). [CrossRef] [PubMed]
  45. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 15, 563-565 (2000). [CrossRef]
  46. M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79, 1528-1530 (2001). [CrossRef]
  47. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102, 1280-1284 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited