OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 659–667

Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll  »View Author Affiliations

JOSA B, Vol. 25, Issue 4, pp. 659-667 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A number of recent studies have shown that hybridized antiphase dipolar plasmons, qualitatively similar to magnetic dipole resonances, can be excited in metal–dielectric–metal structures over a wide frequency range. Here, we study how structural asymmetry in plasmonic nanosandwiches, composed of two Au disks separated by a thin SiO 2 layer, affects their near- and far-field optical properties using point-dipole analysis, electrodynamics simulations, and optical spectroscopy. We find that the strength of the antiphase resonant mode can be increased significantly compared to a symmetrical sandwich if the diameters or thicknesses of the nanodisks in the sandwich are made to differ. Such asymmetrical nanosandwiches also exhibit a generally stronger magnetic response, as characterized by the magnetic near-field enhancement in the region between the disks. However, symmetry breaking also leads to pronounced directionality effects in the magnetic near-field, i.e., the enhancement depends on which side of the sandwich that is first illuminated.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 18, 2007
Revised Manuscript: January 22, 2008
Manuscript Accepted: February 6, 2008
Published: March 31, 2008

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, "Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches," J. Opt. Soc. Am. B 25, 659-667 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686-1686 (2007). [CrossRef] [PubMed]
  4. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  6. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1, 224-227 (2007). [CrossRef]
  7. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  8. R. A. Shalby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef]
  9. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index material: new frontiers in optics,” Adv. Mater. (Weinheim, Ger.) 18, 1941-1952 (2006). [CrossRef]
  10. C. Enkrich, F. P. Willard, D. Gerthsen, J. Zhou, T. Koschny, C. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near infrared magnetic metamaterials,” Adv. Mater. (Weinheim, Ger.) 17, 2547-2549 (2005). [CrossRef]
  11. C. M. Soukoulis, S. Linden, and M. Wegner, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007). [CrossRef] [PubMed]
  12. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41-48 (2007). [CrossRef]
  13. G. Dolling, M. Wegner, C. M. Soukoulis, and S. Linden, “Negative-index metamaterials at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007). [CrossRef]
  14. T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E 76, 016606 (2007). [CrossRef]
  15. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005). [CrossRef] [PubMed]
  16. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” J. Opt. Soc. Am. B 24, 510-515 (2007). [CrossRef]
  17. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434-438 (2006). [CrossRef]
  18. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006). [CrossRef]
  19. A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423-433 (2006). [CrossRef]
  20. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterials combining magnetic resonance with metal films,” Opt. Express 14, 7872-7877 (2006). [CrossRef] [PubMed]
  21. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996). [CrossRef]
  22. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  23. F. Garwe, C. Rockstuhl, C. Etrich, U. Hübner, U. Bauerschäfer, F. Setzpfandt, M. Augustin, T. Pertsch, A. Tünnermann, and F. Lederer, “Evaluation of gold nanowire pairs as a potential negative index material,” Appl. Phys. B 84, 139-148 (2006). [CrossRef]
  24. Z. Huang, J. Xue, Y. Hou, J. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74, 193105 (2006). [CrossRef]
  25. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333-3341 (2007). [CrossRef] [PubMed]
  26. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076-1083 (2007). [CrossRef] [PubMed]
  27. N. Fetch, C. Enkrich, and M. Wegner, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15, 501-507 (2006). [CrossRef]
  28. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic field enhancement in gold nanosandwiches,” Opt. Express 14, 8240-8246 (2006). [CrossRef] [PubMed]
  29. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122-S130 (2006). [CrossRef]
  30. G. Dolling, M. Wegner, and S. Linden, “Realization of a three-functional layer negative-index photonic material,” Opt. Lett. 32, 551-553 (2007). [CrossRef] [PubMed]
  31. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small 3, 294-299 (2007). [CrossRef] [PubMed]
  32. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. (Weinheim, Ger.) 19, 4297-4302 (2007). [CrossRef]
  33. C. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  34. D. M. Sullivan, Electromagnetic Simulation Using FDTD Method (IEEE, 2000). [CrossRef]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited