OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 801–809

Spectral properties and efficient laser operation near 2.0 μ m of Tm 3 + : Ba Gd 2 ( Mo O 4 ) 4 crystal

Haomiao Zhu, Yujin Chen, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang  »View Author Affiliations


JOSA B, Vol. 25, Issue 5, pp. 801-809 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000801


View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 6.4 at. % Tm 3 + -doped Ba Gd 2 ( Mo O 4 ) 4 cleavage crystal was grown by the Czochralski method. Detailed spectral properties of this crystal were investigated, including the polarized absorption and emission spectra and the fluorescence decay. The maximum absorption cross section of the pump band is 3.5 cm × 10 20 cm at 798 nm with a bandwidth of 8 nm , which means that this crystal is suitable for laser diode pumping. The Judd–Ofelt theory was used to calculate the radiative transition probabilities between multiplets. Pumped by a Ti:sapphire laser, the 2.0 μ m quasi-cw laser operation was performed using a cleaved 1.1 mm thick wafer of this crystal in a hemispherical cavity. The achieved highest slope efficiency was 51% with a 6.7% output coupler and the corresponding threshold was 31 mW . The results show that a Tm 3 + : Ba Gd 2 ( Mo O 4 ) 4 crystal is a promising candidate for 2.0 μ m microchip lasers.

© 2008 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 18, 2008
Revised Manuscript: February 27, 2008
Manuscript Accepted: February 27, 2008
Published: April 28, 2008

Citation
Haomiao Zhu, Yujin Chen, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang, "Spectral properties and efficient laser operation near 2.0 μm of Tm3+:BaGd2(MoO4)4 crystal," J. Opt. Soc. Am. B 25, 801-809 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-5-801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452. [CrossRef]
  2. F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001). [CrossRef]
  3. T. J. Carrig, “Novel pulsed solid-state sources for laser remote sensing,” Proc. SPIE 5620, 187-198 (2004). [CrossRef]
  4. T. Thevar and N. P. Barnes, “Diode-pumped, continuous-wave Tm:YAlO3 laser,” Appl. Opt. 45, 3352-3355 (2006). [CrossRef] [PubMed]
  5. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006). [CrossRef]
  6. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000). [CrossRef]
  7. G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-μmTm:BaY2F8 laser,” Opt. Lett. 30, 854-856 (2005). [CrossRef] [PubMed]
  8. A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001). [CrossRef]
  9. V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004). [CrossRef]
  10. A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007). [CrossRef]
  11. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006). [CrossRef]
  12. X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006). [CrossRef]
  13. C. Li, J. Song, D. Y. Shen, N. S. Kim, K. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12-18 (1999). [CrossRef] [PubMed]
  14. R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997). [CrossRef]
  15. H. Saito, S. Chaddha, R. S. F. Chang, and N. Djeu, “Efficient 1.94-μmTm3+ laser in YVO4 host,” Opt. Lett. 17, 189-191 (1992). [CrossRef] [PubMed]
  16. Y. Urata and S. Wada, “808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature,” Appl. Opt. 44, 3087-3092 (2005). [CrossRef] [PubMed]
  17. X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006). [CrossRef]
  18. G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998). [CrossRef]
  19. G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998). [CrossRef]
  20. G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998). [CrossRef]
  21. J. J. Zayhowski, J. Harrison, C. Dill, and J. Ochoa, “Tm-YVO4 microchip laser,” Appl. Opt. 34, 435-437 (1995). [CrossRef] [PubMed]
  22. E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997). [CrossRef]
  23. L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992). [CrossRef]
  24. L. Macalik, “Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln=Y, La, Lu, and M=Mo,W,” J. Alloys Compd. 341, 226-232 (2002). [CrossRef]
  25. V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).
  26. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007). [CrossRef]
  27. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007). [CrossRef]
  28. Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007). [CrossRef]
  29. X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007). [CrossRef]
  30. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962). [CrossRef]
  31. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962). [CrossRef]
  32. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968). [CrossRef]
  33. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998). [CrossRef]
  34. Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004). [CrossRef]
  35. N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).
  36. H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991). [CrossRef]
  37. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999). [CrossRef]
  38. F. Guell, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919-923 (2004). [CrossRef]
  39. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965). [CrossRef]
  40. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967). [CrossRef]
  41. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).
  42. I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999). [CrossRef]
  43. F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002). [CrossRef]
  44. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000). [CrossRef]
  45. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964). [CrossRef]
  46. L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006). [CrossRef]
  47. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993). [CrossRef]
  48. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966). [CrossRef]
  49. Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006). [CrossRef] [PubMed]
  50. V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited