OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 810–817

Three-dimensional numerical modeling of emission from InSb light-emitting diodes with patterned surfaces

I. J. Buss, G. R. Nash, J. G. Rarity, and M. J. Cryan  »View Author Affiliations

JOSA B, Vol. 25, Issue 5, pp. 810-817 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Full 3D numerical modeling is undertaken on light-emitting diode structures with patterned surfaces represented by regular, pseudorandomly disordered, and uniformly distributed random arrays of square holes to investigate both grating and random scattering phenomena. Unlike typical roughened surface LEDs, no recycling mirror is present below the source, enabling straightforward implementation in existing device designs. The period or feature width of the arrays is varied and the output emission intensity calculated. A maximum enhancement factor of 2 is seen for both a disordered pattern with an array period of 1.7 μ m and pattern depth of 0.4 μ m and a particular random pattern with a feature width of 0.85 μ m and depth of 0.4 μ m . The enhancement is believed to be due to mitigation of both total internal reflection and Fresnel reflection phenomena at the semiconductor–air interface.

© 2008 Optical Society of America

OCIS Codes
(240.5770) Optics at surfaces : Roughness
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Optics at Surfaces

Original Manuscript: November 26, 2007
Manuscript Accepted: February 7, 2008
Published: April 28, 2008

I. J. Buss, G. R. Nash, J. G. Rarity, and M. J. Cryan, "Three-dimensional numerical modeling of emission from InSb light-emitting diodes with patterned surfaces," J. Opt. Soc. Am. B 25, 810-817 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963). [CrossRef]
  2. E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2005).
  3. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).
  4. N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002). [CrossRef]
  5. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002). [CrossRef]
  6. G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003). [CrossRef]
  7. G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002). [CrossRef]
  8. W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001). [CrossRef]
  9. L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007). [CrossRef]
  10. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562-4567 (1986). [CrossRef] [PubMed]
  11. A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007). [CrossRef]
  12. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993). [CrossRef]
  13. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491-493 (1983). [CrossRef] [PubMed]
  14. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002). [CrossRef]
  15. S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001). [CrossRef]
  16. A. Sentenac and J.-J. Greffet, “Mean-field theory of light scattering by one-dimensional rough surfaces,” J. Opt. Soc. Am. A 15, 528-532 (1998). [CrossRef]
  17. S. Riyopoulos, “Supercritical angle transmission through quasi-random sub-wavelength-feature interfaces: integral approach via effective surface currents,” J. Opt. Soc. Am. A 22, 2859-2871 (2005). [CrossRef]
  18. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005). [CrossRef]
  19. Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007). [CrossRef]
  20. Condor high throughput computing cluster, http://www.cs.wisc.edu/condor/.
  21. M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited