OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 854–864

Refractive index, free carrier concentration, and mobility depth profiles of ion implanted Si: optical investigation using FTIR spectroscopy

Charalambos C. Katsidis  »View Author Affiliations

JOSA B, Vol. 25, Issue 5, pp. 854-864 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier transform infrared (FTIR) spectroscopy combined with a computer code for optical analysis of multilayer structures is implemented in this study as a nondestructive depth profiling tool. High-energy ( 1.2 MeV ) P implanted Si is examined in the as-implanted state and after annealing at 950 ° C . Ion implantation led to the formation of a buried amorphous layer with transition regions that can be described by half-Gaussian segments. Annealing yielded a free carrier concentration profile that can be modeled by a Pearson distribution as confirmed by spreading resistance profilometry (SRP). The proposed optical analysis model incorporates mobility variation versus depth, and the validity of replacing the varying mobility with a constant average value in the analysis of FTIR data is tested.

© 2008 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(160.6000) Materials : Semiconductor materials
(260.2030) Physical optics : Dispersion
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:

Original Manuscript: January 18, 2008
Revised Manuscript: March 10, 2008
Manuscript Accepted: March 10, 2008
Published: April 30, 2008

Charalambos C. Katsidis, "Refractive index, free carrier concentration, and mobility depth profiles of ion implanted Si: optical investigation using FTIR spectroscopy," J. Opt. Soc. Am. B 25, 854-864 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Giles, “Ion implantation,” in VLSI Technology, S.M.Sze, ed. (Mc Graw Hill, 1988), pp. 327-374.
  2. J. F. Ziegler, Handbook of Ion Implantation Technology (North-Holland, 1992).
  3. D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985). [CrossRef]
  4. R. B. Fair, “Diffusion and ion implantation in silicon,” in Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), G.E.McGuire, ed. (Noyes Publications, 1988), pp. 455-540.
  5. C. C. Katsidis, “Study of the effects of ion implantation on the optical, structural and electrical properties of silicon and SIMOX structures using fast Fourier transform spectroscopy in the infrared,” Ph.D. dissertation (Aristotle University of Thessaloniki, 2002).
  6. M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981). [CrossRef]
  7. A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006). [CrossRef]
  8. B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006). [CrossRef]
  9. K. Suzuki, “Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions,” Fujitsu Sci. Tech. J. 39, 138-149 (2003).
  10. W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998). [CrossRef]
  11. G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982). [CrossRef]
  12. C. C. Katsidis, “Depth profiling of ion implanted materials with skewed doping distributions using FTIR spectroscopy,” Appl. Opt. 47, 213-223 (2008). [CrossRef] [PubMed]
  13. S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.
  14. J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004). [CrossRef]
  15. A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.
  16. R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005). [CrossRef]
  17. S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005). [CrossRef]
  18. N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).
  19. A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007). [CrossRef]
  20. C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007). [CrossRef]
  21. D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996). [CrossRef]
  22. N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000). [CrossRef]
  23. C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001). [CrossRef]
  24. H. Tsuya, “Present status and prospect of Si wafers for ultra large scale integration,” Jpn. J. Appl. Phys., Part 1 43, 4055-4067 (2004). [CrossRef]
  25. A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001). [CrossRef]
  26. R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007). [CrossRef]
  27. T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007). [CrossRef]
  28. S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007). [CrossRef]
  29. D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005). [CrossRef]
  30. K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999). [CrossRef]
  31. K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002). [CrossRef]
  32. E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006). [CrossRef]
  33. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002). [CrossRef] [PubMed]
  34. S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993). [CrossRef]
  35. W. Karstens, D. Bobela, and D. Y. Smith, “Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon,” J. Opt. Soc. Am. A 23, 723-729 (2006). [CrossRef]
  36. G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996). [CrossRef]
  37. H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981). [CrossRef]
  38. L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992). [CrossRef]
  39. J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387-410 (1962).
  40. W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980). [CrossRef]
  41. G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983). [CrossRef]
  42. J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited