OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 1016–1024

Experimental determination of a surface wave at the one-dimensional photonic crystal–metal interface

Aldo S. Ramírez-Duverger, Jorge Gaspar-Armenta, and Raúl García-Llamas  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 1016-1024 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001016


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time, to the best of our knowledge, the existence of a surface wave at the one-dimensional photonic crystal (PC)–metal interface is verified experimentally. That surface mode is excited for both transverse electric and transverse magnetic polarizations in the frequency region where one of the bandgaps of the PC overlaps with the region below the plasma frequency of the metal in the frequency wave-vector space and is observed even under normal incidence from vacuum. For a fixed frequency its angular position is very sensitive to the thickness of the one-dimensional photonic-crystal layer adjacent to the metal.

© 2008 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves
(240.6700) Optics at surfaces : Surfaces
(310.1860) Thin films : Deposition and fabrication
(310.2790) Thin films : Guided waves
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: November 12, 2007
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 20, 2008
Published: May 23, 2008

Citation
Aldo S. Ramírez-Duverger, Jorge Gaspar-Armenta, and Raúl García-Llamas, "Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface," J. Opt. Soc. Am. B 25, 1016-1024 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-1016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961-10964 (1991). [CrossRef]
  3. J. A. Gaspar-Armenta and F. Villa, “Photonic surface-wave excitation: photonic crystal-metal interface,” J. Opt. Soc. Am. B 20, 2349-2354 (2003). [CrossRef]
  4. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33, 1531-1534 (1974). [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508-511 (2006). [CrossRef]
  9. C. Ciminelli, F. Peluso, and M. N. Ármense, “Modeling and design of two-dimensional guided-wave photonic band-gap-devices,” J. Lightwave Technol. 23, 886-901 (2005). [CrossRef]
  10. F. Ramos-Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14, 370-381 (1997). [CrossRef]
  11. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999). [CrossRef]
  12. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface wave in photonic crystal slabs,” Phys. Rev. B 74, 195104-195108 (2006). [CrossRef]
  13. F. Ramos-Mendieta and P. Halevi, “Propagation constant-limited surface modes in dielectric superlattices,” Opt. Commun. 129, 1-5 (1996). [CrossRef]
  14. W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol. 17, 2013-2017 (1999). [CrossRef]
  15. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. A. Gaspar-Armenta, and T. Lóopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27, 646-648 (2002). [CrossRef]
  16. A. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic wave in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005). [CrossRef]
  17. M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range,” Phys. Rev. B 74, 235120-235123 (2006). [CrossRef]
  18. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904-253907 (2006). [CrossRef]
  19. A. S. Ramírez-Duverger, J. Gaspar-Armenta, and R. García-Llamas, “Surface wave effect on light scattering from one-dimensional photonic crystals,” Opt. Commun. 277, 302-309 (2007). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).
  21. A. S. Ramírez-Duverger and R. García-Llamas, “Diseño y construcción de un esparcímetro de luz,” Rev. Mex. Fis. 50, 541-548 (2004).
  22. E. Hecht, Optics (Addison-Wesley Iberoamericana, 2000).
  23. A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planar metallic walls,” Opt. Commun. 227, 227-235 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited