OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 927–936

Negative refraction and the minimum lattice cell size

Igor Tsukerman  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 927-936 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000927


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Artificial periodic structures (metamaterials and photonic crystals) with feature sizes smaller than the wavelength can be capable of supporting backward waves and producing negative refraction. However, backward waves may only exist if the lattice cell size is a sufficiently large fraction of the vacuum wavelength and/or the Bloch wavelength. Explicit lower bounds for the cell size are established and imply, in particular, a limit on the optical resolution of negative-index lenses. A key tool in the analysis is Fourier decomposition of Bloch waves and related eigenfrequency estimates. Numerical examples and a detailed exposition of the mechanism of backward waves are included.

© 2008 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(160.3820) Materials : Magneto-optical materials
(260.2110) Physical optics : Electromagnetic optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Physical Optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: March 14, 2008
Manuscript Accepted: March 15, 2008
Published: May 15, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Igor Tsukerman, "Negative refraction and the minimum lattice cell size," J. Opt. Soc. Am. B 25, 927-936 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry and D. R. Smith, “Reversing light with negative refraction,” Phys. Today 57, 37-43 (2004). [CrossRef]
  2. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, 2004). [CrossRef]
  3. G. V. Eleftheriades and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (Wiley-IEEE Press, 2005). [CrossRef]
  4. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  5. L. I. Mandelshtam, “Group velocity in crystalline arrays,” Zh. Eksp. Teor. Fiz. 15, 475-478 (1945).
  6. L. I. Mandelshtam, Polnoe Sobranie Trudov, Vol. 2.5 (Akademiia Nauk SSSR, 1947, 1950).
  7. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  9. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  11. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479-8482 (1994). [CrossRef]
  12. G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006). [CrossRef]
  13. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. London, Ser. A 461, 3999-4034 (2005). [CrossRef]
  14. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  15. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  16. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  17. D. R. Smith and D. C. Vier, “Design of metamaterials with negative refractive index,” Proc. SPIE 5359, 52-63 (2004). [CrossRef]
  18. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41-48 (2007). [CrossRef]
  19. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434-438 (2006). [CrossRef]
  20. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  21. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780nm wavelength,” Opt. Lett. 32, 53-55 (2007). [CrossRef]
  22. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589-1617 (1987). [CrossRef]
  23. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  24. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  25. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  26. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005). [CrossRef]
  27. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717-3734 (2005). [CrossRef] [PubMed]
  28. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006). [CrossRef]
  29. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]
  30. R. Gajic, R. Meisels, F. Kuchar, and K. Hingerl, “Refraction and rightness in photonic crystals,” Opt. Express 13, 8596-8605 (2005). [CrossRef] [PubMed]
  31. R. Meisels, R. Gajic, F. Kuchar, and K. Hingerl, “Negative refraction and flat-lens focusing in a 2d square-lattice photonic crystal at microwave and millimeter wave frequencies,” Opt. Express 14, 6766-6777 (2006). [CrossRef] [PubMed]
  32. A. L. Pokrovsky and A. L. Efros, “Sign of refractive index and group velocity in lefthanded media,” Solid State Commun. 124, 283-287 (2002). [CrossRef]
  33. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001). [CrossRef]
  34. M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23, 353-359 (2002). [CrossRef]
  35. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316 (2004). [CrossRef]
  36. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  37. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333-3341 (2007). [CrossRef] [PubMed]
  38. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006). [CrossRef]
  39. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of Bloch wave propagation in photonic crystals,” J. Opt. Soc. Am. B 22, 1179-1190 (2005). [CrossRef]
  40. I. Tsukerman, Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves (Springer, 2008). [CrossRef]
  41. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742-756 (1979). [CrossRef]
  42. P. A. Belov, C. R. Simovski, and S. A. Tretyakov, “Backward waves and negative refraction in photonic (electromagnetic) crystals,” J. Commun. Technol. Electron. 49, 1199-1207 (2004).
  43. D. Sjöberg, C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, “A Floquet-Bloch decomposition of Maxwell's equations applied to homogenization,” Multiscale Model. Simul. 4, 149-171 (2005). [CrossRef]
  44. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007). [CrossRef]
  45. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  46. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  47. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290-1292 (2004). [CrossRef]
  48. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  49. F. D. M. Haldane, “Electromagnetic surface modes at interfaces with negative refractive index make a not-quite-perfect lens,” arXiV:cond-mat/0206420v3 (2002).
  50. I. A. Larkin and M. I. Stockman, “Imperfect perfect lens,” Nano Lett. 5, 339-343 (2005). [CrossRef] [PubMed]
  51. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003). [CrossRef]
  52. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  53. G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902 (2004). [CrossRef]
  54. M. Davanço, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15, 9681-9691 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited