OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 937–944

Far-field optical coupling to semi-infinite metal-nanoparticle chains

D. S. Citrin, Yi Wang, and Zhiping Zhou  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 937-944 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000937


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

External optical coupling into and out of semi-infinite chains of noncontacting noble-metal nanoparticles is found to be highly directional. While strong coupling of external radiation into and out of low-attenuation surface plasmon polaritons (PPs) in semi-infinite nanoparticle chains is predicted, the radiation patterns are quite complex indicating possible challenges in mode matching. We show that a treatment that neglects end effects provides an entirely inadequate description of both the PPs on the chain and of the scattered electromagnetic radiation.

© 2008 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Materials

History
Original Manuscript: October 16, 2007
Revised Manuscript: February 14, 2008
Manuscript Accepted: March 24, 2008
Published: May 15, 2008

Citation
D. S. Citrin, Yi Wang, and Zhiping Zhou, "Far-field optical coupling to semi-infinite metal-nanoparticle chains," J. Opt. Soc. Am. B 25, 937-944 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Kren, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticle,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  2. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002). [CrossRef]
  4. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281-2291 (1993). [CrossRef]
  5. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561-1565 (2004). [CrossRef]
  6. R. A. Shore and A. D. Yaghjian, “Travelling electromagnetic waves on linear periodic arrays of lossless spheres,” Electron. Lett. 41, 13-14 (2005). [CrossRef]
  7. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2005). [CrossRef]
  8. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 33402-33405 (2006). [CrossRef]
  9. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436-205453 (2006). [CrossRef]
  10. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  11. S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74, 125111 (2006). [CrossRef]
  12. D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5, 985-989 (2005). [CrossRef] [PubMed]
  13. Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004). [CrossRef]
  14. P. Ghenuche, R. Quidant, and G. Badenes, “Cumulative plasmon field enhancement in finite metal particle chains,” Opt. Lett. 30, 1882-1884 (2005). [CrossRef] [PubMed]
  15. S. Y. Park and D. G. Stroud, “Surface plasmon dispersion relations in chains of metallic nanoparticles: exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  16. S. Zou, N. Janet, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871-10875 (2004). [CrossRef] [PubMed]
  17. C. M. Linton and P. A. Martin, “Semi-infinite arrays of isotropic point scatterers. A unified approach,” SIAM J. Appl. Math. 64, 1035-1056 (2004). [CrossRef]
  18. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31, 98-100 (2006). [CrossRef] [PubMed]
  19. J. B. Tatum, available at orca.phys.uvic.ca/~tatum/stellatm/atm10.pdf.
  20. The Lerch ζ function can be written in terms of the Lerch transcendent Φ(z,s,a) as L(x,a,s)=Φ(z,s,a), where z=exp(2πix).
  21. D. S. Citrin, “Coherent transport of excitons in quantum-dot chains: role of retardation,” Opt. Lett. 20, 901-903 (1995). [CrossRef] [PubMed]
  22. V. M. Agranovich and O. A. Dubovskii, “Effect of retarded interaction on the exciton spectrum in one-dimensional and two-dimensional crystals,” JETP Lett. 3, 223-226 (1966).
  23. D. S. Citrin, “Long intrinsic radiative lifetimes of excitons in quantum wires,” Phys. Rev. Lett. 69, 3393-3396 (1992). [CrossRef] [PubMed]
  24. F. Tassone and F. Bassani, “Quantum wire polaritons,” Nuovo Cimento Soc. Ital. Fis., D 14D, 1241-1254 (1992). [CrossRef]
  25. S. Jorda, “Fine structure of excitons and polariton dispersion in quantum wires,” Solid State Commun. 87, 439-444 (1993). [CrossRef]
  26. Equation can be formally exactly solved by means of the Wiener-Hopf technique . The evaluation of the requisite contour integrals, however, eludes the authors who suspect that they are indeed intractable. In passing, it is conjectured that a closed-form solution is indeed attainable in the long-wavelength limit κd, kzd≪1. This is left as an exercise for the interested reader. While such a result is likely to be of limited quantitative utility for practical NPCs, it may provide deeper physical insight into the details of coupling to the semi-infinite structures.
  27. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. B 11, 1491-1499 (1994). [CrossRef]
  28. W. Wasylkiwskyj, “Mutual coupling effects in semi-infinite arrays,” IEEE Trans. Antennas Propag. AP-21, 277-285 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited