OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1371–1379

Linear optical response of metallic nanoshells in different dielectric media

O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1371-1379 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal nanoshells, which consist of nanometer-scale dielectric cores surrounded by thin metallic shells, have been designed and studied for their linear optical responses. The plasmon resonance of metal nanoshells displays geometric tunability controlled by the ratio of shell thickness either to the core radius or to the total radius of the particle. Using Mie theory the surface plasmon resonance (SPR) of metallic nanoshells (Au, Ag, Cu) is studied for different geometries and physical environments. Considering a final radius of about 20 nm , the SPR peak position can be tuned from 510 nm ( 2.43 eV ) to 660 nm ( 1.88 eV ) for Au, from 360 nm ( 3.44 eV ) to 560 nm ( 2.21 eV ) for Ag, and from 553 nm ( 2.24 eV ) to 655 nm ( 1.89 eV ) for Cu, just by varying the ratio t R Shell and the environments inside and outside. With the decrease of the t R Shell ratio the SPR peak position gets redshifted exponentially and the shift is higher for a higher refractive index surroundings. The plasmon linewidth strongly depends on the surface scattering process and its FWHM increases with the reduction of shell thickness.

© 2008 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4760) Materials : Optical properties
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: May 8, 2008
Manuscript Accepted: June 10, 2008
Published: July 30, 2008

O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, "Linear optical response of metallic nanoshells in different dielectric media," J. Opt. Soc. Am. B 25, 1371-1379 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924-1926 (1996). [CrossRef] [PubMed]
  2. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  3. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999). [CrossRef]
  4. A. M. Schwartzberg, T. Y. Olson, Ch. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935-19944 (2006). [CrossRef] [PubMed]
  5. G. D. Hale, J. B. Jackson, O. E. Shmakova, T. R. Lee, and N. J. Halas, “Enhancing the active lifetime of luminescent semiconducting polymers via doping with metal nanoshells,” Appl. Phys. Lett. 78, 1502-1504 (2001). [CrossRef]
  6. S. Sershen, S. L. Westcott, J. L. West, and N. J. Halas, “An opto-mechanical nanoshell-polymer composite,” Appl. Phys. B 73, 379-381 (2001). [CrossRef]
  7. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511-513 (1985). [CrossRef] [PubMed]
  8. S. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293-298 (2000). [CrossRef] [PubMed]
  9. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297-5305 (2002). [CrossRef] [PubMed]
  10. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257-259 (2003). [CrossRef]
  11. E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325-332 (2002). [CrossRef]
  12. E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94-101 (2003). [CrossRef]
  13. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaller metallösungen,” Ann. Phys. 25, 377-445 (1908). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  17. G. Arfken, Mathematical Methods for Physicists (Academic, 1979).
  18. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951). [CrossRef]
  19. C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204-1211 (2005). [CrossRef]
  20. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, 1976).
  21. E. Pordan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543-547 (2003). [CrossRef]
  22. O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657-3660 (1981). [CrossRef] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  24. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13, 2668-2677 (2005). [CrossRef] [PubMed]
  25. H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218-18222 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited