OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1387–1392

Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves

Chao-Yi Tai, Sheng Hsiung Chang, and TsenChieh Chiu  »View Author Affiliations


JOSA B, Vol. 25, Issue 8, pp. 1387-1392 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001387


View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and optimization of a wide-angle and broadband operational polarization beam splitter by simultaneously satisfying a high reflection of the transverse magnetic (TM) wave and high transmission of the transverse electric (TE) wave using coupled plasmonic waveguides. The finite-difference time-domain (FDTD) method is used in the optimization process where various structural parameters are scanned, and design maps applicable to most III-V material systems are established. Wide-angle operation of over 0° to 70° and ultrabroadband operation over 500 nm with insertion loss less than 1.0 dB are predicted. The extinction ratio is better than 17 dB , and it is realizable on a chip as small as 0.1 × 2 μ m 2 .

© 2008 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: April 21, 2008
Revised Manuscript: June 26, 2008
Manuscript Accepted: June 26, 2008
Published: July 30, 2008

Citation
Chao-Yi Tai, Sheng Hsiung Chang, and TsenChieh Chiu, "Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves," J. Opt. Soc. Am. B 25, 1387-1392 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-8-1387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994). [CrossRef]
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003). [CrossRef]
  3. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994). [CrossRef]
  4. W. N. Ye, D. X. Xu, S. Janz, P. Waldron, P. Cheben, and N. G. Tarr, “Passive broadband silicon-on-insulator polarization splitter,” Opt. Lett. 32, 1492-1494 (2007). [CrossRef] [PubMed]
  5. S. H. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003). [CrossRef] [PubMed]
  6. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005). [CrossRef]
  7. X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006). [CrossRef]
  8. L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434-1436 (2005). [CrossRef] [PubMed]
  9. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510-9519 (2007). [CrossRef] [PubMed]
  10. H. J. Juretschke, “Comment on 'Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem',” Am. J. Phys. 67, 929-930 (1999). [CrossRef]
  11. C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007). [CrossRef]
  12. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990). [CrossRef]
  13. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W,” Appl. Opt. 24, 4493 (1985). [CrossRef] [PubMed]
  14. S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996). [CrossRef]
  15. R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer, 2002), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited