OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1852–1861

Modelling of photonic crystal fiber based on layered inclusions

Thomas Grujic, Boris T. Kuhlmey, C. Martijn de Sterke, and Chris G. Poulton  »View Author Affiliations


JOSA B, Vol. 26, Issue 10, pp. 1852-1861 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001852


View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal fibers often consist of rotationally symmetric inclusions in an otherwise uniform background medium. The band diagrams and modes of such structures can be efficiently calculated using geometry-specific methods that exploit this rotational symmetry. Until now, these have only been applied to fibers in which the inclusions are circular and have a uniform refractive index. Here, we generalize this to arbitrary rotationally symmetric inclusions using a transfer matrix approach, and we implement this approach in an approximate scalar method, which is valid for low-index contrasts and in the rigorous Rayleigh multipole method. We apply the methods to structures incorporating inclusions with graded refractive indices and to structures incorporating metal rings.

© 2009 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.6860) Thin films : Thin films, optical properties
(350.2460) Other areas of optics : Filters, interference
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Photonic Crystals

History
Original Manuscript: May 11, 2009
Manuscript Accepted: June 17, 2009
Published: September 4, 2009

Citation
Thomas Grujic, Boris T. Kuhlmey, C. Martijn de Sterke, and Chris G. Poulton, "Modelling of photonic crystal fiber based on layered inclusions," J. Opt. Soc. Am. B 26, 1852-1861 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-10-1852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  2. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291-6296 (2006). [CrossRef] [PubMed]
  3. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851-10864 (2006). [CrossRef] [PubMed]
  4. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibers,” Opt. Express 14, 5688-5698 (2006). [CrossRef] [PubMed]
  5. B. T. Kuhlmey, F. Luan, L. Fu, D. I. Yeom, B. J. Eggleton, A. Wang, and J. Knight, “Experimental reconstruction of bands in solid core photonic bandgap fibers using acoustic gratings,” Opt. Express 16, 13845-13856 (2008). [CrossRef] [PubMed]
  6. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32, 1647-1649 (2007). [CrossRef] [PubMed]
  7. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibers,” Opt. Express 16, 5983-5990 (2008). [CrossRef] [PubMed]
  8. C. T. Chan, Q. L.Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635-16642 (1995). [CrossRef]
  9. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef] [PubMed]
  10. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787-1792 (2003). [CrossRef]
  11. T. L. Wu and C. H. Chao, “Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole,” IEEE Photon. Technol. Lett. 16, 126-128 (2004). [CrossRef]
  12. H. Cheng, W. Crutchfield, M. Doery, and L. Greengard, “Fast, accurate integral equation methods for the analysis of photonic crystal fibers. I: Theory,” Opt. Express 12, 3791-3805 (2004). [CrossRef] [PubMed]
  13. E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, “Boundary integral method for the challenging problems in bandgap guiding, plasmonics, and sensing,” Opt. Express 15, 10231-10246 (2007). [CrossRef] [PubMed]
  14. A. Hochman and Y. Leviatan, “Efficient and spurious-free integral-equation-based optical waveguide mode solver,” Opt. Express 15, 14431-14453 (2007). [CrossRef] [PubMed]
  15. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  16. P. S. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibers,” US Patent 6,990,282 (2006).
  17. T. A. Birks, G. J. Pearce, and D. D. M. Bird, “Approximate band structure calculation for photonic bandgap fibers,” Opt. Express 14, 9483-9490 (2006). [CrossRef] [PubMed]
  18. L. C. Botten, R. C. McPhedran, C. M. de Sterke, N. A. Nicorovici, A. A. Asatryan, G. H. Smith, T. N. Langtry, T. P. White, D. P. Fussell, and B. T. Kuhlmey, From Multipole Methods to Photonic Crystal Device Modelling (CRC Press, 2005).
  19. L. C. Botten, R. C. McPhedran, N. A. Nicorovici, A. A. Asatryan, C. M. de Sterke, P. A. Robinson, K. Busch, G. H. Smith, and T. N. Langtry, “Rayleigh multipole methods for photonic crystal calculations,” PIER 41, 21-60 (2003), doi:10.2528/PIER02010802. [CrossRef]
  20. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004). [CrossRef]
  21. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  22. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  23. S. Campbell, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919-1928 (2004). [CrossRef]
  24. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Academic, 1983).
  26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964), ninth Dover printing, tenth GPO printing ed.
  27. B. Kuhlmey, “Theoretical and numerical investigation of the physics of microstructured optical fibers,” Ph.D. thesis, University of Sydney and Université Aix-Marseille III (2006). http://setis.library.usyd.edu.au/adt/public html/adt-NU/public/adt-NU20040715.171105/.
  28. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41, 7808-7816 (2000). [CrossRef]
  29. S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green's function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590-4602 (1994). [CrossRef]
  30. T. P. White, R. C. McPhedran, L. C. Botten, G. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721-732 (2001). [CrossRef] [PubMed]
  31. G. P. Agrawal and R. W. Boyd, Nonlinear Fiber Optics (Springer, 2001).
  32. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  33. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys Rev B 77, 033417 (2007). [CrossRef]
  34. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibers with high-index rods,” J. Opt. A 6, 798-804 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited