OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1882–1891

Radiation forces on dielectric and absorbing particles studied via the finite-difference time- domain method

Lin Jia and Edwin L. Thomas  »View Author Affiliations

JOSA B, Vol. 26, Issue 10, pp. 1882-1891 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the three dimensional finite-difference time-domain (FDTD) method, we calculate the radiation force from an incident plane wave on both dielectric and absorbing particles in the Lorentz–Mie regime via the Maxwell stress tensor approach. We find that the radiation force changes with particle permittivity, and we categorize the force into three regions: increasing, fluctuating, and constant. We discuss how particle size, shape, orientation and absorption affect the radiation force. A nanoscale solar sail is proposed based on our calculation. A detailed understanding of the optical force of a plane wave on particles in the Lorentz–Mie regime is fundamental for designing nanoscale solar sail systems and optical traps from a set of interfering plane waves.

© 2009 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: March 25, 2009
Manuscript Accepted: July 17, 2009
Published: September 11, 2009

Lin Jia and Edwin L. Thomas, "Radiation forces on dielectric and absorbing particles studied via the finite-difference time-domain method," J. Opt. Soc. Am. B 26, 1882-1891 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Maxwell, A Treatise on Electricity and Magnetism (Oxford, 1873).
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  4. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  6. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  8. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095-13100 (2006). [CrossRef] [PubMed]
  9. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef] [PubMed]
  10. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  11. G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976). [CrossRef]
  12. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40, 1961-1973 (2001). [CrossRef]
  13. R. C. Gauthier and M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421-6431 (1998). [CrossRef]
  14. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  15. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996). [CrossRef]
  16. L. Lorenz, “Lysbevaegelsen i og uden for en haf plane lysbolger belyst kulge,” Vidensk. Selk. Skr. 6, 1-62 (1890).
  17. G. Mie, “Beitrage zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. 30, 377-452 (1908). [CrossRef]
  18. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem material,” Ann. Phys. 30, 57-136 (1909). [CrossRef]
  19. G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a Gaussian-beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  20. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988). [CrossRef]
  21. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  22. J. P. Barton, “Internal and near-surface electromagnetic-fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542-5551 (1995). [CrossRef] [PubMed]
  23. G. Gouesbet and L. Mees, “Generalized Lorentz-Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333-1341 (1999). [CrossRef]
  24. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998). [CrossRef]
  25. B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974). [CrossRef]
  26. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996). [CrossRef]
  27. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  28. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  29. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13, 2321-2336 (2005). [CrossRef] [PubMed]
  30. D. W. Zhang, X. C. Yuan, S. C. Tjin, and S. Krishnan, “Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,” Opt. Express 12, 2220-2230 (2004). [CrossRef] [PubMed]
  31. W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006). [CrossRef]
  32. R. C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express 13, 3707-3718 (2005). [CrossRef] [PubMed]
  33. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942-2957 (2008). [CrossRef] [PubMed]
  34. M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999). [CrossRef] [PubMed]
  35. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990). [CrossRef] [PubMed]
  36. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, “Passive guiding and sorting of small particles with optical binding forces,” Opt. Lett. 31, 3378-3380 (2006). [CrossRef] [PubMed]
  37. J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008). [CrossRef] [PubMed]
  38. J. J. Xiao and C. T. Chan, “Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method,” J. Opt. Soc. Am. B 25, 1553-1561 (2008). [CrossRef]
  39. T. M. Grzegorczyk and J. A. Kong, “Analytical expression of the force due to multiple TM plane-wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” J. Opt. Soc. Am. B 24, 644-652 (2007). [CrossRef]
  40. V. Wong and M. A. Ratner, “Size dependence of gradient and nongradient optical forces in silver nanoparticles,” J. Opt. Soc. Am. B 24, 106-112 (2007). [CrossRef]
  41. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing mie particles,” Phys. Rev. Lett. 97, 133902 (2006). [CrossRef] [PubMed]
  42. B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984). [CrossRef]
  43. A. G. Hoekstra, M. Frijlink, L. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944-1953 (2001). [CrossRef]
  44. T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).
  45. W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009). [CrossRef]
  46. D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microw. Guid. Wave Lett. 6, 97-99 (1996). [CrossRef]
  47. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 302-307 (1966).
  48. V. Wong and M. A. Ratner, “Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation,” J. Opt. Soc. Am. B 23, 1801-1814 (2006). [CrossRef]
  49. G. le Faure and H. de Graffigny, The Extraordinary Adventures of a Russian Scientist (1889).
  50. B. G. Lee, B. A. Small, K. Bergman, Q. F. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701-2703 (2006). [CrossRef] [PubMed]
  51. Q. F. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733-2735 (2005). [CrossRef] [PubMed]
  52. L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008). [CrossRef]
  53. H. J. Butt, “Towards powering nanometer-scale devices with molecular motors: single molecule engines,” Macromol. Chem. Phys. 207, 573-575 (2006). [CrossRef]
  54. Univ. Oregon Solar Radiation Monitoring Laboratory, “Solar radiation basics,” http://solardat.uoregon.edu/SolarRadiationBasics.html.
  55. C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Springer-Verlag Telos, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited