OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1944–1948

Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices

Zhiwen Kang, Weihua Lin, and Guo Ping Wang  »View Author Affiliations

JOSA B, Vol. 26, Issue 10, pp. 1944-1948 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a kind of low-loss plasmonic superlattice with a few coupled resonant cavities to realize dual-channel broadband slow surface plasmon polaritons (SPPs) around two telecom wavelengths of 1550 nm and 1310 nm. The dual-channel slow SPPs result from the introduction of two kinds of coupled cavities into the superlattices. Theoretical analysis is confirmed by the finite-difference time domain (FDTD) numerical simulations. Our structures offer another avenue for researchers to explore novel slow SPP technologies and thereby may inspire further exploration of advanced photonic devices for next-generation telecommunication, optical data processing, and on-chip integration.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 29, 2009
Revised Manuscript: August 19, 2009
Manuscript Accepted: August 25, 2009
Published: September 23, 2009

Zhiwen Kang, Weihua Lin, and Guo Ping Wang, "Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices," J. Opt. Soc. Am. B 26, 1944-1948 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007). [CrossRef]
  2. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  4. M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004). [CrossRef] [PubMed]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  6. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003). [CrossRef] [PubMed]
  8. T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33, 1398-1400 (2008). [CrossRef] [PubMed]
  9. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317-2322 (2006). [CrossRef] [PubMed]
  10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008). [CrossRef]
  11. Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004). [CrossRef]
  12. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006). [CrossRef]
  13. J. K. S. Poon, L. Zhu, G. Derose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456-458 (2006). [CrossRef] [PubMed]
  14. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007). [CrossRef]
  15. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007). [CrossRef]
  16. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  17. G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008). [CrossRef]
  18. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007). [CrossRef]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  20. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  22. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008). [CrossRef] [PubMed]
  24. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007). [CrossRef] [PubMed]
  25. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009). [CrossRef] [PubMed]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
  27. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423-437 (1977). [CrossRef]
  28. W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008). [CrossRef]
  29. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396-405 (1974). [CrossRef] [PubMed]
  30. X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005). [CrossRef]
  31. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  32. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497-530. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited