OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2449–2454

Analysis of mode characteristics for equilateral-polygonal resonators with a center hole

Shi-Jiang Wang, Yue-De Yang, and Yong-Zhen Huang  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2449-2454 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mode characteristics for equilateral triangles, squares, and hexagonal resonators with a center hole are numerically simulated by the finite-different time domain (FDTD) technique. The center hole does not break the symmetry behavior of the original resonators and can result in modification of the mode field patterns and mode Q factors. In an equilateral triangle resonator the center hole can suppress the symmetry state of degenerate states with the merit of single mode operation. In a square resonator, the Q factor can be enhanced for some modes with a suitable size of the hole. For a hexagonal resonator with a side length of 1 μ m and a refractive index of 3.2, the mode Q factors first gradually decrease with the increase of the hole diameter for modes at a wavelength of about 1500 nm , then the modes transform to that of a microdisk with a jump of the mode wavelength as the hole diameter approaches 0.7 μ m . Finally, the mode Q factors greatly enhance as the hole diameter reaches about 1 μ m . The results indicate that the center hole can greatly modify mode characteristics, especially that of the mode Q factor.

© 2009 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 24, 2009
Manuscript Accepted: November 1, 2009
Published: November 30, 2009

Shi-Jiang Wang, Yue-De Yang, and Yong-Zhen Huang, "Analysis of mode characteristics for equilateral-polygonal resonators with a center hole," J. Opt. Soc. Am. B 26, 2449-2454 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  2. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007). [CrossRef]
  3. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008). [CrossRef] [PubMed]
  4. S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993). [CrossRef]
  5. Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007). [CrossRef]
  6. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002). [CrossRef]
  7. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999). [CrossRef]
  8. H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004). [CrossRef]
  9. J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006). [CrossRef]
  10. Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002). [CrossRef]
  11. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005). [CrossRef]
  12. Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006). [CrossRef]
  13. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  15. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001). [CrossRef]
  16. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004). [CrossRef]
  17. W. Zhao and Y. Z. Huang, “Analysis of directional emission in square resonator lasers with an output waveguide,” Chin. Opt. Lett. 5, 463-465 (2007).
  18. J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563-1565 (2007). [CrossRef] [PubMed]
  19. Y. Z. Huang and Y. D. Yang, “Calculation of light delay for coupled microrings by FDTD technique and Padé approximation,” J. Opt. Soc. Am. A 11, 2419-2426 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited