OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B102–B110

Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays

Sukosin Thongrattanasiri, Justin Elser, and Viktor A. Podolskiy  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. B102-B110 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze wave propagation in coupled planar waveguides, pointing specific attention to modal cross-talk and out-of-plane scattering in quasi-planar photonics. An algorithm capable of accurate numerical computation of wave coupling in arrays of planar structures is developed and illustrated on several examples of plasmonic and volumetric waveguides. An analytical approach to reduce or completely eliminate scattering and modal cross-talk in planar waveguides with anisotropic materials is also presented.

© 2009 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6690) Optics at surfaces : Surface waves
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials

Original Manuscript: August 3, 2009
Manuscript Accepted: August 30, 2009
Published: October 16, 2009

Sukosin Thongrattanasiri, Justin Elser, and Viktor A. Podolskiy, "Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays," J. Opt. Soc. Am. B 26, B102-B110 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002). [CrossRef] [PubMed]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003). [CrossRef]
  3. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005). [CrossRef] [PubMed]
  4. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  6. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  8. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  9. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young's double-slit experiment,” Nature Nanotech. 2, 426-429 (2007). [CrossRef]
  10. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]
  11. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601-1611 (1997). [CrossRef]
  12. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photon. 2, 242-246 (2008). [CrossRef]
  13. V. V. Schevchenko, Continuous Transitions in Open Waveguides (Golem, 1971).
  14. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: implications for nanoscale cavities,” Phys. Rev. B 76, 035408 (2007). [CrossRef]
  15. J. Elser and V. A. Podolskiy, “Scattering-free plasmonic optics with anisotropic metamaterials,” Phys. Rev. Lett. 100, 066402 (2008). [CrossRef] [PubMed]
  16. P. J. B. Clarricoats and K. R. Slinn, “Numerical method for the solution of waveguide-discontinuity problems,” Electron. Lett. 2, 226-228 (1966). [CrossRef]
  17. T. Sondergaard and S. I. Bozhevolnyi, “Out-of-plane scattering properties of long-range surface plasmon polariton gratings,” Phys. Status Solidi B 242, 3064-3069 (2005). [CrossRef]
  18. T. Rozzi and M. Mongiardo, Open Electromagnetic Waveguides (Inspec/IEE, 1997). [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  21. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  22. W. H. Press, W. T. Wetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in Fortran 77 (Cambridge Univ. Press, 1992).
  23. E.Palik, ed., The Handbook of Optical Constants of Solids (Academic, 1997).
  24. For details see COMSOL Multiphysics User's Guide and RF Module User's Guide; COMSOL (1994-2009); www.comsol.com.
  25. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41-48 (2007). [CrossRef]
  26. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23, 498-505 (2006). [CrossRef]
  27. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef] [PubMed]
  28. C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, R. Pollard, and A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89, 231117 (2006). [CrossRef]
  29. Y. F. Chen, P. Fischer, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005) and Reply Y. F. Chen, P. Fischer, and F. W. Wise, Phys. Rev. Lett. 98, 059702 (2007). [CrossRef] [PubMed]
  30. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892-894 (2006). [CrossRef] [PubMed]
  31. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  32. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  33. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  34. I. I. Smolyaninov, Y. J. Huang, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  35. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  36. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34, 890-892 (2009). [CrossRef] [PubMed]
  37. V. A. Podolskiy and J. Elser, “Electroplasmonics: dynamical plasmonic circuits with minimized parasitic scattering (QTuJ2),” presented at the Conference on Lasers and Electro-Optics (CLEO) and the International Quantum Electronics Conference (IQEC), Washington, D.C., May 4-8, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited