OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B83–B95

Enhancement of optical properties of nanoscaled objects by metal nanoparticles

J. B. Khurgin and G. Sun  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B83-B95 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000B83


View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We provide a simple analytical model for the modification of optical properties of active molecules and other objects when they are placed in the vicinity of metal nanoparticles of subwavelength dimensions. Specifically, we study the enhancement of optical radiation, electroluminescence, and photoluminescence absorbed or emitted by these objects. The theory takes into account the radiative decay of the surface plasmon mode supported by the metal nanospheres—a basic phenomenon that has been ignored in electrostatic treatment. Using the example of Ag nanospheres embedded in a GaN dielectric, we show that enhancement for each case depends strongly on the nanoparticle size-enabling optimization for each combination of absorption cross section, original radiative efficiency, and separation between the object and metal sphere. The enhancement effect is most significant for relatively weak and diluted absorbers and rather inefficient emitters that are placed in close proximity to the metal nanoparticles.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

History
Original Manuscript: July 8, 2009
Manuscript Accepted: August 27, 2009
Published: October 9, 2009

Citation
J. B. Khurgin and G. Sun, "Enhancement of optical properties of nanoscaled objects by metal nanoparticles," J. Opt. Soc. Am. B 26, B83-B95 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B83


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  3. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006). [CrossRef]
  4. L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007). [CrossRef] [PubMed]
  5. C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995). [CrossRef] [PubMed]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996). [CrossRef]
  7. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004). [CrossRef]
  8. G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008). [CrossRef]
  9. G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007). [CrossRef]
  10. D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008). [CrossRef]
  11. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  13. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007). [CrossRef]
  14. K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005). [CrossRef]
  15. M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  16. M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002). [CrossRef]
  17. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  19. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999). [CrossRef]
  20. Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003). [CrossRef] [PubMed]
  21. M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991). [CrossRef]
  22. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  23. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002). [CrossRef]
  24. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003). [CrossRef]
  25. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  26. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003). [CrossRef]
  27. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004). [CrossRef]
  28. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004). [CrossRef]
  29. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004). [CrossRef]
  30. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004). [CrossRef]
  31. M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004). [CrossRef]
  32. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001). [CrossRef] [PubMed]
  33. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994). [CrossRef] [PubMed]
  34. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  35. F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).
  36. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997). [CrossRef]
  37. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.
  38. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006). [CrossRef]
  39. J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006). [CrossRef]
  40. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006). [CrossRef] [PubMed]
  41. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007). [CrossRef] [PubMed]
  42. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006). [CrossRef] [PubMed]
  43. J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008). [CrossRef]
  44. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008). [CrossRef]
  45. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009). [CrossRef]
  46. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009). [CrossRef]
  47. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
  48. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  49. Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007). [CrossRef]
  50. Nanophotonics with Surface Plasmons Vl. M.Shalaev and S.Kawata eds., (Elsevier, 2007).
  51. J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.
  52. H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).
  53. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000). [CrossRef]
  54. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004). [CrossRef]
  55. L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008). [CrossRef]
  56. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  57. M. A. Ali, J. Moghaddassi, and S. A. Ahmed, “Optical properties of cooled Rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807-1810 (1991). [CrossRef]
  58. S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004). [CrossRef]
  59. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  60. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007). [CrossRef]
  61. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946). [CrossRef]
  62. J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited