OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 203–209

Tuning the decoupling point of a photonic-crystal directional coupler

Chih-Hsien Huang, Wen-Feng Hsieh, and Szu-Cheng Cheng  »View Author Affiliations


JOSA B, Vol. 26, Issue 2, pp. 203-209 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000203


View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The decoupling point is a crossing in the dispersion curves of a photonic-crystal coupler. At this point, the energy in one waveguide cannot be transferred into the other one. Controlling the decoupling point can modify the properties of the coupler. From the extended tight-binding theory (TBT), which includes coupling of the guiding mode field up to the next nearest-neighboring defects, we found there is a blueshift in the frequency of the decoupling point in the square lattice and a redshift in the triangular lattice by translating the defect rods along the axis of the coupler. By moving the defects of the coupler close to each other transversely, not only the eigenfrequencies of the coupler but also separations of dispersion curves increase due to the stronger coupling between the defect rods. From the simulation results of the plane wave expansion and the finite difference time domain methods, the theoretical analyses of TBT agree with the numerical ones. Therefore, we successfully derive the design rules using the TBT for tuning the coupling length and decoupling frequency of a directional coupler.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: September 8, 2008
Manuscript Accepted: October 28, 2008
Published: January 7, 2009

Citation
Chih-Hsien Huang, Wen-Feng Hsieh, and Szu-Cheng Cheng, "Tuning the decoupling point of a photonic-crystal directional coupler," J. Opt. Soc. Am. B 26, 203-209 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-2-203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2488 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443-2460 (1993). [CrossRef]
  4. A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999). [CrossRef]
  5. W. J. Kim, W. Kuang, and J. D. O'Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Express 11, 3431-3437 (2003). [CrossRef] [PubMed]
  6. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]
  7. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  8. M. Abashin, P. Tortora, I. M. Marki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643-1657 (2006). [CrossRef] [PubMed]
  9. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006). [CrossRef]
  10. W. W. Huang, Y. Zhang, and B. J. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600-1609 (2008). [CrossRef] [PubMed]
  11. D. Gerace and L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939-4951 (2005). [CrossRef] [PubMed]
  12. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005). [CrossRef]
  13. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003). [CrossRef]
  14. F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006). [CrossRef]
  15. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004). [CrossRef] [PubMed]
  16. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004). [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  19. J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000). [CrossRef]
  20. M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002). [CrossRef]
  21. K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002). [CrossRef]
  22. T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005). [CrossRef]
  23. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002). [CrossRef]
  24. F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007). [CrossRef]
  25. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994). [CrossRef]
  26. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568-570 (2002). [CrossRef]
  27. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), pp. 97-100.
  28. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  29. W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007). [CrossRef]
  30. C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited