OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 640–644

New design of four-channel add–drop filters based on double-resonant cavity photonic crystals

Yaw-Dong Wu, Ke-Wei Hsu, Tien-Tsorng Shih, and Jian-Jang Lee  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 640-644 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a new double-resonant cavity four-channel add–drop filter based on the in-plane type two-dimensional (2D) photonic crystal with square lattice. Through this novel double-resonant cavity, WDM signals can be coupled in or out of the bus waveguide with 100% add–drop efficiency while completely prohibiting cross talk between the bus and the add–drop waveguides for all other wavelengths. This device could be used as an optical add–drop multiplexer (OADM) in coarse wavelength division multiplexing (CWDM) applications.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.5750) Optical devices : Resonators
(230.7400) Optical devices : Waveguides, slab
(250.5300) Optoelectronics : Photonic integrated circuits
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: December 2, 2008
Manuscript Accepted: January 20, 2009
Published: March 10, 2009

Yaw-Dong Wu, Ke-Wei Hsu, Tien-Tsorng Shih, and Jian-Jang Lee, "New design of four-channel add-drop filters based on double-resonant cavity photonic crystals," J. Opt. Soc. Am. B 26, 640-644 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonvitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997). [CrossRef]
  4. D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires,” Opt. Lett. 31, 1988-1990 (2006). [CrossRef] [PubMed]
  5. K. Takiguchi, K. Okamoto, and A. Sugita, “Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels,” Opt. Lett. 31, 459-461 (2006). [CrossRef] [PubMed]
  6. M. E. Marhic, “Hybrid transversal-lattice optical filters,” Opt. Express 10, 1190-1194 (2002). [PubMed]
  7. S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005). [CrossRef]
  8. T. L. White, J. Zhang, B. J. Koch, and M. Haase, “Universal coupling between metal-clad waveguide and optical ring resonators,” Opt. Express 15, 646-651 (2007). [CrossRef] [PubMed]
  9. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007). [CrossRef] [PubMed]
  10. T. Yanagimachi, H. Oguri, J. Nayyer, S. Ishihara, and J. Minowa, “High-performance and highly stable 0.3-nm full width at half-maximum interference optical filters,” Appl. Opt. 33, 3513-3517 (1994). [CrossRef] [PubMed]
  11. B. Li, S. Y. Zhang, J. C. Jiang, B. Fan, and F. S. Zhang, “Improving low-temperature performance of infrared thin-film interference filters utilizing the intrinsic properties of IV-VI narrow-gap semiconductors,” Opt. Express 12, 401-404 (2004). [CrossRef] [PubMed]
  12. Y.-D. Wu, K.-W. Hsu, and T.-T. Shih, “Thirty-two-channel dense-wavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2800 (2007). [CrossRef]
  13. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001). [CrossRef]
  14. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003). [CrossRef]
  15. T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003). [CrossRef]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003). [CrossRef]
  17. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002). [CrossRef]
  18. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002). [CrossRef]
  19. C.-W. Kuo, C.-F. Chang, M.-H. Chen, S.-Y. Chen, and Y.-D. Wu, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 198-206 (2007). [CrossRef] [PubMed]
  20. H. Ren, C. Jiang, W. Hu, M. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7-A11 (2007). [CrossRef]
  21. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003). [CrossRef]
  22. H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005). [CrossRef]
  23. P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006). [CrossRef]
  24. N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006). [CrossRef]
  25. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  26. S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518-5525 (2004). [CrossRef] [PubMed]
  27. J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. S. Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826-835 (2005). [CrossRef] [PubMed]
  28. Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13, 2596-2604 (2005). [CrossRef] [PubMed]
  29. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006). [CrossRef] [PubMed]
  30. H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006). [CrossRef] [PubMed]
  31. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14, 12394-12400 (2006). [CrossRef] [PubMed]
  32. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  33. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191-202, (1980). [CrossRef]
  34. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited