OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 734–742

Electromagnetic resonances of a multilayer metal–dielectric stack

M. R. Gadsdon, J. Parsons, and J. R. Sambles  »View Author Affiliations


JOSA B, Vol. 26, Issue 4, pp. 734-742 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000734


View Full Text Article

Enhanced HTML    Acrobat PDF (3025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic resonances of multilayer metal–dielectric stacks are investigated. These structures support periodic bandpass regions, whose band edges may be predicted by considering the character of the fields inside the different layers. It is shown that the response of the structure is largely independent of its overall length, and that only the geometry of the unit cell is important. In the metal layers, the fields may have either a cosh or a sinh distribution function and match to standing waves inside the adjacent dielectric cavities at the metal–dielectric interface. It is shown that the different boundary conditions, imposed by the evanescent fields, result in the dielectric layers having a different effective length for the two modes. The sinh fields result in an effective length being very close to that of the physical length, and adjacent cavities oscillating out of phase, while the cosh fields may result in a significantly larger effective dielectric length and adjacent cavities oscillating in phase. A bandpass region is opened, with its high frequency edge always being near the dielectric Fabry–Perot limit, while the low frequency band edge is significantly redshifted.

© 2009 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: November 21, 2008
Manuscript Accepted: January 5, 2009
Published: March 18, 2009

Citation
M. R. Gadsdon, J. Parsons, and J. R. Sambles, "Electromagnetic resonances of a multilayer metal-dielectric stack," J. Opt. Soc. Am. B 26, 734-742 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photonics News 10, 23-27 (1998).
  4. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377-2383 (1998). [CrossRef]
  5. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  6. M. C. Larciprete, C. Sibilia, S. Paolini, and M. Bertolotti, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003). [CrossRef]
  7. M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508-523 (2007). [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and C. X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  10. K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130-2132 (2006). [CrossRef] [PubMed]
  11. C. Sibilia, I. S. Nefedov, M. Scalora, and M. Bertolotti, “Electromagnetic mode density for finite quasi-periodic structures,” J. Opt. Soc. Am. B 15, 1947-1952 (1998). [CrossRef]
  12. A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys.: Condens. Matter 5, 7361-7374 (1993). [CrossRef]
  13. A. Bichri, J. Lafait, H. Welsch, and M. Abd-Lefdil, “Characterization of Berreman modes in metal/dielectric and multilayers,” J. Phys.: Condens. Matter 9, 6523-6532 (1997). [CrossRef]
  14. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99, 124903 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited