OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1103–1110

Electro-optic tuning and modulation of single-crystalline organic microring resonators

Harry Figi, Mojca Jazbinšek, Christoph Hunziker, Manuel Koechlin, and Peter Günter  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 1103-1110 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001103


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present, for the first time to our knowledge, the fabrication and electro-optic (EO) tuning of single-crystalline organic microring resonators. In recent years, optical microring resonators have proven to be highly suitable building blocks for the realization of very large-scale integrated photonic circuits. In particular, microresonators based on organic materials are very promising for ultrafast EO applications, due to the electronic nature of the EO response preserving the modulation performances beyond 100 GHz . In contrast to polymer waveguiding structures realized previously, our crystalline thin-film devices feature an excellent long-term stability of the chromophore orientation and superior photochemical stability, and they do not require high-field poling prior to operation. The introduced thin-film fabrication method significantly reduces fabrication complexity of organic crystalline EO waveguides, compared to previously developed techniques. We have fabricated crystalline COANP (2-cyclo-octylamino-5-nitropyridine) microring resonators with resonance contrast up to 10 dB , ring waveguide propagation losses of about 10 dB cm , a free spectral range of 1.6 nm , a finesse of up to 20, and a corresponding Q-factor of about 20,000, measured in the telecom wavelength range around 1.55 μ m . We have demonstrated resonance wavelength tuning at the rate of 0.13 GHz V ( 1.1 pm V ) .

© 2009 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(160.4890) Materials : Organic materials
(230.2090) Optical devices : Electro-optical devices
(250.7360) Optoelectronics : Waveguide modulators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Optoelectronics

History
Original Manuscript: February 17, 2009
Manuscript Accepted: March 11, 2009
Published: April 24, 2009

Citation
Harry Figi, Mojca Jazbinšek, Christoph Hunziker, Manuel Koechlin, and Peter Günter, "Electro-optic tuning and modulation of single-crystalline organic microring resonators," J. Opt. Soc. Am. B 26, 1103-1110 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-1103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  2. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430-436 (2007). [CrossRef] [PubMed]
  3. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007). [CrossRef]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002). [CrossRef] [PubMed]
  5. B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006). [CrossRef]
  6. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997). [CrossRef]
  7. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000). [CrossRef]
  8. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007). [CrossRef]
  9. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177-4191 (2008). [CrossRef] [PubMed]
  10. M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008). [CrossRef]
  11. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008). [CrossRef] [PubMed]
  12. J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007). [CrossRef]
  13. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008). [CrossRef] [PubMed]
  14. H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008). [CrossRef] [PubMed]
  15. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  16. M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008). [CrossRef]
  17. P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003). [CrossRef]
  18. T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002). [CrossRef]
  19. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003). [CrossRef]
  20. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004). [CrossRef]
  21. L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express 16, 731-739 (2008). [CrossRef] [PubMed]
  22. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007). [CrossRef] [PubMed]
  23. C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008). [CrossRef] [PubMed]
  24. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310-11327 (2008). [CrossRef] [PubMed]
  25. P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987). [CrossRef]
  26. C. Bosshard, K. Sutter, and P. Günter, “Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine,” J. Opt. Soc. Am. B 6, 721-725 (1989). [CrossRef]
  27. A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998). [CrossRef]
  28. C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867-885 (1993). [CrossRef]
  29. A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996). [CrossRef]
  30. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000). [CrossRef]
  31. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).
  32. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007). [CrossRef]
  33. SCHOTT AG, “Dielektrische konstante,” (2009). Available at http://www.schott.com.
  34. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309-4315 (2008). [CrossRef] [PubMed]
  35. H. Figi, L. Mutter, C. Hunziker, M. Jazbinšek, P. Günter, and B. J. Coe, “Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH,” J. Opt. Soc. Am. B 25, 1786-1793 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited