OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1484–1491

Design of quantum cascade microcavity lasers based on Q factor versus etching depth

Jing Li, Yue-De Yang, and Yong-Zhen Huang  »View Author Affiliations


JOSA B, Vol. 26, Issue 8, pp. 1484-1491 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001484


View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 μ m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively. Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation.

© 2009 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3948) Lasers and laser optics : Microcavity devices
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 20, 2009
Manuscript Accepted: May 3, 2009
Published: July 2, 2009

Citation
Jing Li, Yue-De Yang, and Yong-Zhen Huang, "Design of quantum cascade microcavity lasers based on Q factor versus etching depth," J. Opt. Soc. Am. B 26, 1484-1491 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-8-1484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69, 2456-2458 (1996). [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556-1564 (1998). [CrossRef] [PubMed]
  4. S. Gianordoli, L. Strasser, W. Schrenk, K. Unterrainer, and E. Gornik, “GaAs/AlGaAs-based microcylinder lasers emitting at 10 μm,” Appl. Phys. Lett. 75, 1045-1047 (1999). [CrossRef]
  5. S. Gianordoli, L. Hvozdara, G. Strasser, W. Schrenk, J. Faist, and E. Gornik, “Long-wavelength (λ=10 μm) quadrupolar-shaped GaAs-AlGaAs microlasers,” IEEE J. Quantum Electron. 36, 458-464 (2000). [CrossRef]
  6. R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, F. Capasso, E. E. Narimanov, D. Bour, S. Corzine, J. T. Zhu, and G. Höflerf, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007). [CrossRef]
  7. J. Semmel, W. Kaiser, H. Hofmann, S. Höfling, and A. Forchel, “Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter,” Appl. Phys. Lett. 93, 211106 (2008). [CrossRef]
  8. G. Fasching, V. Tamosiunas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum cascade lasers,” IEEE J. Quantum Electron. 43, 687-696 (2007). [CrossRef]
  9. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164-4166 (2004). [CrossRef]
  10. V. Tamosiunas, Z. Kancleris, and M. Tamosiuniene, “Simulation of modes in terahertz quantum cascade microring and microdisk lasers,” Acta Phys. Pol. A 113, 917-920 (2008).
  11. Y. D. Yang, Y. Z. Huang, and Q. Chen, “High-Q TM whispering-gallery modes in three-dimensional microcylinders,” Phys. Rev. A 75, 013817 (2007). [CrossRef]
  12. Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering-gallery modes in 3-D microcavities,” J. Lightwave Technol. 26, 1411-1416 (2008). [CrossRef]
  13. B. J. Li and P. L. Liu, “Numerical analysis of the whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583-1587 (1996). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  15. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39, 1563-1566 (2003). [CrossRef]
  16. Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of modes in a freestanding microsquare resonator by 3D finite-difference time-domain simulation,” IEEE J. Quantum Electron. 41, 997-1001 (2005). [CrossRef]
  17. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001). [CrossRef]
  18. M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002). [CrossRef]
  19. Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photon. Technol. Lett. 19, 1981-1983 (2007). [CrossRef]
  20. L. Li, F. Q. Liu, Y. Shao, J. Q. Liu, and Z. G. Wang, “Low-threshold high-temperature operation of λ~7.4 μm quantum cascade lasers,” Chin. Phys. Lett. 24, 1577-1579 (2007). [CrossRef]
  21. B. J. Li and P. L. Liu, “Numerical analysis of microdisk lasers with rough boundaries,” IEEE J. Quantum Electron. 33, 791-795 (1997). [CrossRef]
  22. Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006). [CrossRef]
  23. F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93, 031104 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited